Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Small Methods ; 6(9): e2200664, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35802901

RESUMEN

Synthetic polymer materials such as paraformaldehyde and polyamides are widely used in the field of energy engineering. However, they pose a challenge to environmental sustainability because they are derived from petrochemicals that are non-renewable and difficult to degrade in the natural environment. The development of high-performance natural alternatives is clearly emerging as a promising mitigation option. Inspired by natural bamboo, this research reports a "three-step" strategy for the large-scale production of triboelectric materials with special nanostructures from natural bamboo. Benefiting from the special hierarchical porous structure of the material, Bamboo/polyaniline triboelectric materials can reach short-circuit current of 2.9 µA and output power of 1.1 W m-2 at a working area of only 1 cm2 , which exceeds most wood fiber-based triboelectric materials. More importantly, it maintains 85% energy harvesting after an extreme environment of high temperature (200 °C), low temperature (-196 °C), combustion environment, and multiple thermal shocks (ΔT = 396 °C). This is unmatched by current synthetic polymer materials. This work provides new research ideas for the construction and application of biomass structural materials under extreme environmental conditions.


Asunto(s)
Nanoestructuras , Nylons , Polímeros/química , Porosidad
2.
Nat Commun ; 13(1): 4168, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851036

RESUMEN

The effective acquisition of clean water from atmospheric water offers a potential sustainable solution for increasing global water and energy shortages. In this study, an asymmetric amphiphilic surface incorporating self-driven triboelectric adsorption was developed to obtain clean water from the atmosphere. Inspired by cactus spines and beetle elytra, the asymmetric amphiphilic surface was constructed by synthesizing amphiphilic cellulose ester coatings followed by coating on laser-engraved spines of fluorinated ethylene propylene. Notably, the spontaneous interfacial triboelectric charge between the droplet and the collector was exploited for electrostatic adsorption. Additionally, the droplet triboelectric nanogenerator converts the mechanical energy generated by droplets falling into electrical energy through the volume effect, achieving an excellent output performance, and further enhancing the electrostatic adsorption by means of external charges, which achieved a water harvesting efficiency of 93.18 kg/m2 h. This strategy provides insights for the design of water harvesting system.


Asunto(s)
Electricidad , Agua , Electricidad Estática
3.
Small ; 18(25): e2200577, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35587612

RESUMEN

Non-contact mode triboelectric nanogenerators effectively avoid physical contact between two triboelectric materials and achieve long-term reliable operation, providing broad application prospects in the field of self-powered sensing. However, the low surface charge density of triboelectric materials restricts application of contactless sensing. Herein, by controlling Rayleigh Instability deformation of the spinning jet and vapor-induced phase separation during electrostatic spinning, a polyvinylidene fluoride@Mxene (Ti3 C2 Tx ) composite film with spheres multiple physical network structures is prepared and utilized as the triboelectric material of a self-powered contactless sensor. The structure of the composite film and high conductivity of Ti3 C2 Tx provide triboelectric materials with high output performance (charge output and power output up to 128 µC m-2 and 200 µW cm-2 at 2 Hz) and high output stability. The self-powered contactless sensor shows excellent speed sensitivity (1.175 Vs m-1 ). Additionally, it could accurately identify the motion states such as running (55 mV), jumping (105 mV), and walking (40 mV) within the range of 70 cm, and present the signals in different pop forms. This work lays a solid foundation for the development and application of high-performance triboelectric materials, and has guiding significance for the research of self-powered contactless sensing.

4.
ACS Nano ; 15(6): 10577-10586, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34013716

RESUMEN

Using clean and sustainable stochastic energy from the environment to eliminate pollution caused by gaseous aldehydes would be an effective strategy to achieve the sustainable development of energy and preserve the environment. Here, a piston-based triboelectric nanogenerator (P-TENG) was used to enhance gaseous acetaldehyde absorption and photocatalytic degradation. An external electric field could be generated on a conductive substrate by the P-TENG, converting wind energy into electricity. This made it possible to efficiently degrade gaseous acetaldehyde in the photocatalytic system. Driven by a light breeze (3.0 m/s), the acetaldehyde removal rate of the system reached 63% within 30 min. The presence of an external electric field could generate more hydroxyl radicals (•OH), superoxide radicals (•O2-), and holes (h+), which has a positive effect on the photocatalytic degradation of acetaldehyde. The design and concept of this study not only realized the efficient conversion of renewable and sustainable random energy but also could be applied to the efficient removal of gaseous aldehydes, providing an effective way to create a cleaner environment.

5.
Carbohydr Polym ; 250: 116971, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049900

RESUMEN

Cellulosic materials are especially suitable for use in flexible electronic products because of their light weight, good tolerance, flexibility, and biodegradability. In this work, cellulose nanofibril/reduced graphene oxide (CNF/rGO) nanocomposites are prepared and the thermal properties of the nanocomposites are analyzed. A supporting column and 2D layered structure porous paper is obtained with CNF/rGO as the heat conduction skeleton, which shows excellent thermal conductivity. The results show that this novel CNF/rGO porous paper has an ultrahigh in-plane thermal conductivity of up to 16.30 W/m K when only 1 wt.% rGO is added in, demonstrating efficient thermal management performance of the CNF-based nanocomposites with low rGO loading. We believe that the development of thermal management techniques using CNFs and rGO for emergent energy storage devices will lead to efficient technologies, further easing our daily lives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA