Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 282: 127651, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430888

RESUMEN

Climate change and anthropogenic disturbances are known to influence soil biodiversity. The objectives of this study were to compare the community composition, species coexistence patterns, and ecological assembly processes of soil microbial communities in a paired setting featuring a natural and an anthropogenic ecosystem facing each other at identical climatic, pedological, and vegetational conditions. A transect gradient from forest to seashore allowed for sampling across different habitats within both sites. The field survey was carried out at two adjacent strips of land within the Po River delta lagoon system (Veneto, Italy) one of which is protected within a natural preserve and the other has been converted for decades into a tourist resort. The anthropogenic pressure interestingly led to an increase in the α-diversity of soil microbes but was accompanied by a reduction in ß-diversity. The community assembly mechanisms of microbial communities differentiate in natural and anthropic ecosystems: for bacteria, in natural ecosystems deterministic variables and homogeneous selection play a main role (51.92%), while stochastic dispersal limitation (52.15%) is critical in anthropized ecosystems; for fungi, stochastic dispersal limitation increases from 38.1% to 66.09% passing from natural to anthropized ecosystems. We are on calcareous sandy soils and in more natural ecosystems a variation of topsoil pH favors the deterministic selection of bacterial communities, while a divergence of K availability favors stochastic selection. In more anthropized ecosystems, the deterministic variable selection is influenced by the values of SOC. Microbial networks in the natural system exhibited higher numbers of nodes and network edges, as well as higher averages of path length, weighted degree, clustering coefficient, and density than its equivalent sites in the more anthropically impacted environment. The latter on the other hand presented a stronger modularity. Although the influence of stochastic processes increases in anthropized habitats, niche-based selection also proves to impose constraints on communities. Overall, the functionality of the relationships between groups of microorganisms co-existing in communities appeared more relevant to the concept of functional biodiversity in comparison to the plain number of their different taxa. Fewer but functionally more organized lineages displayed traits underscoring a better use of the resources than higher absolute numbers of taxa when those are not equally interconnected in their habitat exploitation. However, considering that network complexity can have important implications for microbial stability and ecosystem multifunctionality, the extinction of complex ecological interactions in anthropogenic habitats may impair important ecosystem services that soils provide us.


Asunto(s)
Ecosistema , Microbiota , Microbiología del Suelo , Biodiversidad , Bosques , Suelo/química , Bacterias/genética
2.
J Mt Sci ; 17(10): 2459-2484, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052199

RESUMEN

At the end of October 2018, a storm of unprecedented strength severely damaged the forests of the eastern sector of the Italian Alps. The affected forest area covers 42,500 ha. The president of one of the damaged regions asked for help from the University of Padua. After eight months of discussion, the authors of this article wrote a consensus text. The sometimes asper debate brought to light some crucial aspects: 1) even experienced specialists may have various opinions based on scientific knowledge that lead to conflicting proposals for action. For some of them there is evidence that to restore a destroyed natural environment it is more judicious to do nothing; 2) the soil corresponds to a living structure and every ecosystem's management should be based on it; 3) faced with a catastrophe, people and politicians find themselves unarmed, also because they rarely have the scientific background to understand natural processes. Yet politicians are the only persons who make the key decisions that drive the economy in play and therefore determine the near future of our planet. This article is an attempt to respond directly to a governor with a degree in animal production science, who formally and prudently asked a university department called "Land, Environment, Agriculture and Forestry" for help before taking decisions; 4) the authors also propose an artistic interpretation of facts (uncontrolled storm) and conclusions (listen to the soil). Briefly, the authors identify the soil as an indispensable source for the renewal of the destroyed forest, give indications on how to prepare a map of the soils of the damaged region, and suggest to anchor on this soil map a series of silvicultural and soil management actions that will promote the soil conservation and the faster recovery of the natural dynamic stability and resilience. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at 10.1007/s11629-019-5890-0 and is accessible for authorized users.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA