Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 57(9): 5526-5543, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29624050

RESUMEN

A series of water-soluble zwitterionic complexes featuring a carboxylate bridge-functionalized bis-N-heterocyclic carbene ligand of formula [Cp*MIIICl{(MeIm)2CHCOO}] and [MI(diene){(MeIm)2CHCOO}] (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; M = Rh, Ir; MeIm = 3-methylimidazol-2-yliden-1-yl; diene = 1,5-cyclooctadiene (cod), norbornadiene (nbd)) were prepared from the salt [(MeImH)2CHCOO]Br and suitable metal precursor. The solid-state structure of both types of complexes shows a boat-shaped six-membered metallacycle derived of the κ2C,C' coordination mode of the bis-NHC ligand. The uncoordinated carboxylate fragment is found at the bowsprit position in the Cp*MIII complexes, whereas in the MI(diene) complexes it is at the flagpole position of the metallacycle. The complexes [RhI(diene){(MeIm)2CHCOO}] (diene = cod, nbd) exist as two conformational isomers in dichloromethane, bowsprit and flagpole, that interconvert through the boat-to-boat inversion of the metallacycle. An inversion barrier of ∼17 kcal·mol-1 was determined by two-dimensional exchange spectroscopy NMR measurements for [RhI(cod){(MeIm)2CHCOO}]. Reaction of zwitterionic Cp*MIII complexes with methyl triflate or tetrafluoroboric acid affords the cationic complexes [Cp*MIIICl{(MeIm)2CHCOOMe}]+ or [Cp*MIIICl{(MeIm)2CHCOOH}]+ (M = Rh, Ir) featuring carboxy and methoxycarbonyl functionalized methylene-bridged bis-NHC ligands, respectively. Similarly, complexes [MI(diene){(MeIm)2CHCOOMe}]+ (M = Rh, Ir) were prepared by alkylation of the corresponding zwitterionic MI(diene) complexes with methyl triflate. In contrast, reaction of [IrI(cod){(MeIm)2CHCOO}] with HBF4·Et2O (Et = ethyl), CH3OTf, CH3I, or I2 gives cationic iridium(III) octahedral complexes [IrIIIX(cod){(MeIm)2CHCOO}]+ (X = H, Me, or I) featuring a tripodal coordination mode of the carboxylate bridge-functionalized bis-NHC ligand. The switch from κ2C,C' to κ3C,C',O coordination of the bis-NHC ligand accompanying the oxidative addition prevents the coordination of the anions eventually formed in the process that remain as counterions.

2.
Chemistry ; 21(49): 17877-89, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26493780

RESUMEN

The borrowing hydrogen methodology allows for the use of alcohols as alkylating agents for CC bond forming processes offering significant environmental benefits over traditional approaches. Iridium(I)-cyclooctadiene complexes having a NHC ligand with a O- or N-functionalised wingtip efficiently catalysed the oxidation and ß-alkylation of secondary alcohols with primary alcohols in the presence of a base. The cationic complex [Ir(NCCH3 )(cod)(MeIm(2- methoxybenzyl))][BF4 ] (cod=1,5-cyclooctadiene, MeIm=1-methylimidazolyl) having a rigid O-functionalised wingtip, shows the best catalyst performance in the dehydrogenation of benzyl alcohol in acetone, with an initial turnover frequency (TOF0 ) of 1283 h(-1) , and also in the ß-alkylation of 2-propanol with butan-1-ol, which gives a conversion of 94 % in 10 h with a selectivity of 99 % for heptan-2-ol. We have investigated the full reaction mechanism including the dehydrogenation, the cross-aldol condensation and the hydrogenation step by DFT calculations. Interestingly, these studies revealed the participation of the iridium catalyst in the key step leading to the formation of the new CC bond that involves the reaction of an O-bound enolate generated in the basic medium with the electrophilic aldehyde.

3.
Dalton Trans ; 43(39): 14778-86, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25157558

RESUMEN

The synthesis and structural characterization of zwitterionic [(η(6)-C6H5-BPh3)M(coe)2] (M = Rh, Ir) cyclooctene complexes is described. Both complexes exhibit an unusual exo-endo conformation of both cyclooctene ligands in the solid state. However, an equilibrium between the endo-endo and exo-endo rotational isomers arising from the hindered rotation about the metal-cyclooctene bond is observed in solution. Rotational barriers of around 65 kJ mol(-1) (Rh) and 84 kJ mol(-1) (Ir) have been determined by 2D EXSY NMR spectroscopy. The rotation process has also been studied by DFT calculations that showed that the dynamic behaviour is a consequence of the oscillation of the cyclooctene ligands about the metal-olefin bond instead of completing a full rotation.

4.
J Am Chem Soc ; 127(31): 11184-95, 2005 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-16076226

RESUMEN

The elongated dihydrogen complex [formula: see text](1) reacts with 1,1-diphenyl-2-propyn-1-ol and 2-methyl-3-butyn-2-ol to give the hydride-hydroxyvinylidene-pi-alkynol derivatives [OsH{=C=CHC(OH)R2}{eta2-HC(triple bond)CC(OH)R2}(PiPr3)2]BF4 (R = Ph (2), Me (3)), where the pi-alkynols act as four-electron donor ligands. Treatment of 2 and 3 with HBF(4) and coordinating solvents leads to the dicationic hydride-alkenylcarbyne compounds [OsH((triple bond)CCH=CR2)S2(PiPr3)2][BF4]2 (R = Ph, S = H(2)O (4), CH(3)CN (5); R = Me, S = CH(3)CN (6)), which in acetonitrile evolve into the alkenylcarbene complexes [Os(=CHCH=CR2)(CH3CN)3(PiPr3)2][BF4](2) (R = Ph (7), Me (8)) by means of a concerted 1,2-hydrogen shift from the osmium to the carbyne carbon atom. Treatment of 2-propanol solutions of 5 with NaCl affords OsHCl2((triple bond)CCH=CPh2)(PiPr3)2 (10), which reacts with AgBF(4) and acetonitrile to give [OsHCl((triple bond)CCH=CPh2)(CH3CN)(PiPr3)2]BF(4) (11). In this solvent complex 11 is converted to [OsCl(=CHCH=CPh2)(CH3CN)2(PiPr3)2]BF(4) (12). Complex 5 reacts with CO to give [Os(=CHCH=CPh2)(CO)(CH3CN)2(PiPr3)2][BF(4)](2) (15). DFT calculations and kinetic studies for the hydride-alkenylcarbyne to alkenylcarbene transformation show that the difference of energy between the starting compounds and the transition states, which can be described as eta(2)-carbene species [formula: see text] increases with the basicity of the metallic center. The X-ray structures of 4 and 7 and the rotational barriers for the carbene ligands of 7, 8, and 12 are also reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA