RESUMEN
BACKGROUND: Little is known about the cocirculation of influenza and SARS-CoV-2 viruses during the COVID-19 pandemic and the use of respiratory disease sentinel surveillance platforms for monitoring SARS-CoV-2 activity in sub-Saharan Africa. OBJECTIVE: We aimed to describe influenza and SARS-CoV-2 cocirculation in Kenya and how the SARS-CoV-2 data from influenza sentinel surveillance correlated with that of universal national surveillance. METHODS: From April 2020 to March 2022, we enrolled 7349 patients with severe acute respiratory illness or influenza-like illness at 8 sentinel influenza surveillance sites in Kenya and collected demographic, clinical, underlying medical condition, vaccination, and exposure information, as well as respiratory specimens, from them. Respiratory specimens were tested for influenza and SARS-CoV-2 by real-time reverse transcription polymerase chain reaction. The universal national-level SARS-CoV-2 data were also obtained from the Kenya Ministry of Health. The universal national-level SARS-CoV-2 data were collected from all health facilities nationally, border entry points, and contact tracing in Kenya. Epidemic curves and Pearson r were used to describe the correlation between SARS-CoV-2 positivity in data from the 8 influenza sentinel sites in Kenya and that of the universal national SARS-CoV-2 surveillance data. A logistic regression model was used to assess the association between influenza and SARS-CoV-2 coinfection with severe clinical illness. We defined severe clinical illness as any of oxygen saturation <90%, in-hospital death, admission to intensive care unit or high dependence unit, mechanical ventilation, or a report of any danger sign (ie, inability to drink or eat, severe vomiting, grunting, stridor, or unconsciousness in children younger than 5 years) among patients with severe acute respiratory illness. RESULTS: Of the 7349 patients from the influenza sentinel surveillance sites, 76.3% (n=5606) were younger than 5 years. We detected any influenza (A or B) in 8.7% (629/7224), SARS-CoV-2 in 10.7% (768/7199), and coinfection in 0.9% (63/7165) of samples tested. Although the number of samples tested for SARS-CoV-2 from the sentinel surveillance was only 0.2% (60 per week vs 36,000 per week) of the number tested in the universal national surveillance, SARS-CoV-2 positivity in the sentinel surveillance data significantly correlated with that of the universal national surveillance (Pearson r=0.58; P<.001). The adjusted odds ratios (aOR) of clinical severe illness among participants with coinfection were similar to those of patients with influenza only (aOR 0.91, 95% CI 0.47-1.79) and SARS-CoV-2 only (aOR 0.92, 95% CI 0.47-1.82). CONCLUSIONS: Influenza substantially cocirculated with SARS-CoV-2 in Kenya. We found a significant correlation of SARS-CoV-2 positivity in the data from 8 influenza sentinel surveillance sites with that of the universal national SARS-CoV-2 surveillance data. Our findings indicate that the influenza sentinel surveillance system can be used as a sustainable platform for monitoring respiratory pathogens of pandemic potential or public health importance.
Asunto(s)
COVID-19 , Coinfección , Gripe Humana , Niño , Humanos , SARS-CoV-2 , Gripe Humana/epidemiología , COVID-19/epidemiología , Mortalidad Hospitalaria , Kenia/epidemiología , Pandemias , Vigilancia de GuardiaRESUMEN
BACKGROUND: The World Health Organization (WHO) encourages countries to provide appropriate vaccinations for children, adolescents, and relevant adult populations. Childhood programme have been the focus of global investments, but recent pandemics have increasingly demonstrated the value of life course vaccination. Our objective is to compare national life course immunization programmatic maturity prior to mass COVID-19 vaccine introduction, the largest adult vaccination programme, globally. As coverage estimates (typically used to assess childhood programmes) are not available for adult vaccinations, this analysis pilots a standardized quantitative metric of programmatic maturity. METHODS: Through consultation with vaccination experts, we developed a standardized approach to assess national immunization programme maturity across the life course. In accordance with expert input, five vaccines were selected to represent delivery across the life course: diphtheria tetanus toxoid and pertussis (DTP); measles (MCV) second dose; human papillomavirus (HPV) final dose; pneumococcal conjugate (PCV) final dose; and seasonal influenza annual dose. Experts recommended inclusion of the following indicators for each vaccine: a legal mandate (national policy), experience delivering the vaccine (programme duration), and vaccine use (uptake for relevant populations). We developed a metric accordingly that provides up to 5 points per vaccine ("vaccine specific maturity score") which when summed forms the "life course maturity score", with a maximum score of 25. We analysed the prevalence of national policies, experience, and use by region and World Bank income group. RESULTS: More than 55% of the 194 WHO Member States had childhood vaccine policies for all three of the vaccines considered (DTP, MCV, and PCV) compared to 60% for HPV (proxy for adolescent vaccination programme) and 52% for seasonal influenza (proxy for adult vaccination programme). Childhood vaccination programmes (e.g., MCV and DTP) had the highest vaccine specific maturity scores, while seasonal influenza and HPV vaccination programmes had much lower scores. The national life course maturity scores ranged from 1 to 23, with a global median of 12 (IQR: 8; 16). DISCUSSION: The piloted metric provides an overview of the maturity of life course immunization programmes. The metric is structured to be a flexible, rapid resource that can be used to assess other combinations of vaccines across the life course. The findings from this paper provide a baseline of immunization programme maturity for childhood, adolescent, and adult vaccination programmes immediately prior to the COVID-19 vaccine introduction. This maturity score, or adaptations of this approach, could be used to monitor the trajectory of national immunization programme maturity across the life course in the years ahead.
Asunto(s)
COVID-19 , Programas de Inmunización , Humanos , Adolescente , COVID-19/prevención & control , COVID-19/epidemiología , Adulto , Niño , Vacunación/estadística & datos numéricos , Organización Mundial de la Salud , Cobertura de Vacunación/estadística & datos numéricos , Vacunas contra la COVID-19/administración & dosificación , Vacuna contra Difteria, Tétanos y Tos Ferina/administración & dosificación , Vacunas contra la Influenza/administración & dosificación , Vacunas Neumococicas/administración & dosificaciónRESUMEN
BACKGROUND: During the COVID-19 pandemic, nearly all countries introduced COVID-19 vaccination programmes. Yet, countries had a wide range of programmatic experiences. This analysis aims to identify national characteristics associated with COVID-19 vaccination programmatic success. METHODS: We used the following outcome measures: the presence of national COVID-19 vaccination capacities and COVID-19 coverage as of December 2021, June 2022, and December 2022. We developed a standardized metric for assessing national COVID-19 vaccination capacities as a proxy for speed of introduction. We developed this metric through adaptation of the WHO Guide for Conducting an Expanded Programme on Immunization Review and consultations with technical experts specializing in vaccine introduction and emergency deployment; monitoring and data; childhood, adolescent and adult programmes; and COVID-19 vaccination roll-out. Through multivariable linear regressions, we evaluated whether having a mature immunization programme for children, adolescents and adults; recent use of emergency vaccination; World Bank income classification; past early adoption of new vaccines; density of the health workforce; and/or trust in science and government were associated with higher COVID-19 vaccination capacities and coverage. RESULTS: The COVID-19 vaccination capacities scores ranged from 0 to 5 points with a global median score of 2 and an interquartile range of 1;4. After adjusting for World Bank income classifications, the presence of a mature influenza vaccination programme was independently correlated with statistically significant higher scores of national COVID-19 vaccination capacities and higher COVID-19 vaccination coverage in December 2021, June 2022, and December 2022. Trust in government was also associated with higher coverage for all three time stamps. CONCLUSIONS: As countries consider how to prepare for and respond to future pandemics, having an adult seasonal influenza vaccination programme, building trust in government, and ensuring equitable access to vaccines supply emerged as key aspects that can benefit from additional national and global focus.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Programas de Inmunización , SARS-CoV-2 , Vacunación , Humanos , COVID-19/prevención & control , COVID-19/epidemiología , Adolescente , Vacunas contra la COVID-19/administración & dosificación , Niño , Adulto , SARS-CoV-2/inmunología , Vacunación/estadística & datos numéricos , Cobertura de Vacunación/estadística & datos numéricosRESUMEN
PURPOSE: Clinical relapse is the major threat for patients with myelodysplastic syndrome (MDS) undergoing hematopoietic stem-cell transplantation (HSCT). Early detection of measurable residual disease (MRD) would enable preemptive treatment and potentially reduced relapse risk. METHODS: Patients with MDS planned for HSCT were enrolled in a prospective, observational study evaluating the association between MRD and clinical outcome. We collected bone marrow (BM) and peripheral blood samples until relapse, death, or end of study 24 months after HSCT. Patient-specific mutations were identified with targeted next-generation sequencing (NGS) panel and traced using droplet digital polymerase chain reaction (ddPCR). RESULTS: Of 266 included patients, estimated relapse-free survival (RFS) and overall survival (OS) rates 3 years after HSCT were 59% and 64%, respectively. MRD results were available for 221 patients. Relapse was preceded by positive BM MRD in 42/44 relapses with complete MRD data, by a median of 71 (23-283) days. Of 137 patients in continuous complete remission, 93 were consistently MRD-negative, 39 reverted from MRD+ to MRD-, and five were MRD+ at last sampling. Estimated 1 year-RFS after first positive MRD was 49%, 39%, and 30%, using cutoff levels of 0.1%, 0.3%, and 0.5%, respectively. In a multivariate Cox model, MRD (hazard ratio [HR], 7.99), WHO subgroup AML (HR, 4.87), TP53 multi-hit (HR, 2.38), NRAS (HR, 3.55), and acute GVHD grade III-IV (HR, 4.13) were associated with shorter RFS. MRD+ was also independently associated with shorter OS (HR, 2.65). In a subgroup analysis of 100 MRD+ patients, presence of chronic GVHD was associated with longer RFS (HR, 0.32). CONCLUSION: Assessment of individualized MRD using NGS + ddPCR is feasible and can be used for early detection of relapse. Positive MRD is associated with shorter RFS and OS (ClinicalTrials.gov identifier: NCT02872662).
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/métodos , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/terapia , Recurrencia Local de Neoplasia/genética , Neoplasia Residual/genética , Pronóstico , Estudios Prospectivos , RecurrenciaRESUMEN
BACKGROUND: Using country-specific surveillance data to describe influenza epidemic activity could inform decisions on the timing of influenza vaccination. We analysed surveillance data from African countries to characterise the timing of seasonal influenza epidemics to inform national vaccination strategies. METHODS: We used publicly available sentinel data from African countries reporting to the WHO Global Influenza Surveillance and Response FluNet platform that had 3-10 years of data collected during 2010-19. We calculated a 3-week moving proportion of samples positive for influenza virus and assessed epidemic timing using an aggregate average method. The start and end of each epidemic were defined as the first week when the proportion of positive samples exceeded or went below the annual mean, respectively, for at least 3 consecutive weeks. We categorised countries into five epidemic patterns: northern hemisphere-dominant, with epidemics occurring in October-March; southern hemisphere-dominant, with epidemics occurring in April-September; primarily northern hemisphere with some epidemic activity in southern hemisphere months; primarily southern hemisphere with some epidemic activity in northern hemisphere months; and year-round influenza transmission without a discernible northern hemisphere or southern hemisphere predominance (no clear pattern). FINDINGS: Of the 34 countries reporting data to FluNet, 25 had at least 3 years of data, representing 46% of the countries in Africa and 89% of Africa's population. Study countries reported RT-PCR respiratory virus results for a total of 503â609 specimens (median 12â971 [IQR 9607-20â960] per country-year), of which 74â001 (15%; median 2078 [IQR 1087-3008] per country-year) were positive for influenza viruses. 248 epidemics occurred across 236 country-years of data (median 10 [range 7-10] per country). Six (24%) countries had a northern hemisphere pattern (Algeria, Burkina Faso, Egypt, Morocco, Niger, and Tunisia). Eight (32%) had a primarily northern hemisphere pattern with some southern hemisphere epidemics (Cameroon, Ethiopia, Mali, Mozambique, Nigeria, Senegal, Tanzania, and Togo). Three (12%) had a primarily southern hemisphere pattern with some northern hemisphere epidemics (Ghana, Kenya, and Uganda). Three (12%) had a southern hemisphere pattern (Central African Republic, South Africa, and Zambia). Five (20%) had no clear pattern (Côte d'Ivoire, DR Congo, Madagascar, Mauritius, and Rwanda). INTERPRETATION: Most countries had identifiable influenza epidemic periods that could be used to inform authorities of non-seasonal and seasonal influenza activity, guide vaccine timing, and promote timely interventions. FUNDING: None. TRANSLATIONS: For the Berber, Luganda, Xhosa, Chewa, Yoruba, Igbo, Hausa and Afan Oromo translations of the abstract see Supplementary Materials section.
Asunto(s)
Epidemias , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Estudios Retrospectivos , Burkina Faso , Estaciones del AñoRESUMEN
Background: External quality assessments (EQAs) for the molecular detection of human respiratory syncytial virus (RSV) are necessary to ensure the standardisation of reliable results. The Phase II, 2019-2020 World Health Organization (WHO) RSV EQA included 28 laboratories in 26 countries. The EQA panel evaluated performance in the molecular detection and subtyping of RSV-A and RSV-B. This manuscript describes the preparation, distribution, and analysis of the 2019-2020 WHO RSV EQA. Methods: Panel isolates underwent whole genome sequencing and in silico primer matching. The final panel included nine contemporary, one historical virus and two negative controls. The EQA panel was manufactured and distributed by the UK National External Quality Assessment Service (UK NEQAS). National laboratories used WHO reference assays developed by the United States Centers for Disease Control and Prevention, an RSV subtyping assay developed by the Victorian Infectious Diseases Reference Laboratory (Australia), or other in-house or commercial assays already in use at their laboratories. Results: An in silico analysis of isolates showed a good match to assay primer/probes. The panel was distributed to 28 laboratories. Isolates were correctly identified in 98% of samples for detection and 99.6% for subtyping. Conclusions: The WHO RSV EQA 2019-2020 showed that laboratories performed at high standards. Updating the composition of RSV molecular EQAs with contemporary strains to ensure representation of circulating strains, and ensuring primer matching with EQA panel viruses, is advantageous in assessing diagnostic competencies of laboratories. Ongoing EQAs are recommended because of continued evolution of mismatches between current circulating strains and existing primer sets.
Asunto(s)
Virus Sincitial Respiratorio Humano , Virus , Estados Unidos , Humanos , Virus Sincitial Respiratorio Humano/genética , Laboratorios , Organización Mundial de la Salud , AustraliaRESUMEN
Objective: To assess the stability of improvements in global respiratory virus surveillance in countries supported by the United States Centers for Disease Control and Prevention (CDC) after reductions in CDC funding and with the stress of the coronavirus disease 2019 (COVID-19) pandemic. Methods: We assessed whether national influenza surveillance systems of CDC-funded countries: (i) continued to analyse as many specimens between 2013 and 2021; (ii) participated in activities of the World Health Organization's (WHO) Global Influenza Surveillance and Response System; (iii) tested enough specimens to detect rare events or signals of unusual activity; and (iv) demonstrated stability before and during the COVID-19 pandemic. We used CDC budget records and data from the WHO Global Influenza Surveillance and Response System. Findings: While CDC reduced per-country influenza funding by about 75% over 10 years, the number of specimens tested annually remained stable (mean 2261). Reporting varied substantially by country and transmission zone. Countries funded by CDC accounted for 71% (range 61-75%) of specimens included in WHO consultations on the composition of influenza virus vaccines. In 2019, only eight of the 17 transmission zones sent enough specimens to WHO collaborating centres before the vaccine composition meeting to reliably identify antigenic variants. Conclusion: Great progress has been made in the global understanding of influenza trends and seasonality. To optimize surveillance to identify atypical influenza viruses, and to integrate molecular testing, sequencing and reporting of severe acute respiratory syndrome coronavirus 2 into existing systems, funding must continue to support these efforts.
Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , COVID-19/epidemiología , COVID-19/prevención & control , Centers for Disease Control and Prevention, U.S. , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias/prevención & control , Vigilancia de la Población , Estados Unidos/epidemiologíaRESUMEN
The International Society for Influenza and other Respiratory Virus Diseases (isirv) and the WHO held a joint virtual conference from 19th-21st October 2021. While there was a major focus on the global response to the SARS-CoV-2 pandemic, including antivirals, vaccines and surveillance strategies, papers were also presented on treatment and prevention of influenza and respiratory syncytial virus (RSV). Potential therapeutics for SARS-CoV-2 included host-targeted therapies baricitinib, a JAK inhibitor, tocilizumab, an IL-6R inhibitor, verdinexor and direct acting antivirals ensovibep, S-217622, AT-527, and monoclonal antibodies casirivimab and imdevimab, directed against the spike protein. Data from trials of nirsevimab, a monoclonal antibody with a prolonged half-life which binds to the RSV F-protein, and an Ad26.RSV pre-F vaccine were also presented. The expanded role of the WHO Global Influenza Surveillance and Response System to address the SARS-CoV-2 pandemic was also discussed. This report summarizes the oral presentations given at this meeting for the benefit of the broader medical and scientific community involved in surveillance, treatment and prevention of respiratory virus diseases.
Asunto(s)
COVID-19/terapia , Gripe Humana/terapia , Infecciones por Virus Sincitial Respiratorio/terapia , COVID-19/prevención & control , Salud Global , Humanos , Gripe Humana/prevención & control , Infecciones por Virus Sincitial Respiratorio/prevención & control , Organización Mundial de la SaludRESUMEN
BACKGROUND: To prepare key stakeholders for the global COVID-19 vaccination rollout, the World Health Organization and partners developed online vaccination training packages. The online course was launched in December 2020 on the OpenWHO learning platform. This paper presents the findings of an evaluation of this course. OBJECTIVE: The aim of this evaluation was to provide insights into user experiences and challenges, measure the impact of the course in terms of knowledge gained, and anticipate potential interest in future online vaccination courses. METHODS: The primary source of data was the anonymized information on course participants, enrollment, completion, and scores from the OpenWHO platform's statistical data and metric reporting system. Data from the OpenWHO platform were analyzed from the opening of the courses in mid-December 2020 to mid-April 2021. In addition, a learner feedback survey was sent by email to all course participants to complete within a 3-week period (March 19 to April 9, 2021). The survey was designed to determine the perceived strengths and weaknesses of the training packages and to understand barriers to access. RESULTS: During the study period, 53,593 learners enrolled in the course. Of them, 30,034 (56.0%) completed the course, which is substantially higher than the industry benchmark of 5%-10% for a massive open online course (MOOC). Overall, learners averaged 76.5% on the prequiz compared to 85% on the postquiz, resulting in an increase in average score of 9%. A total of 2019 learners from the course participated in the survey. Nearly 98% (n=1647 fully agree, n=308 somewhat agree; N=1986 survey respondents excluding missing values) of respondents fully or somewhat agreed that they had more confidence in their ability to support COVID-19 vaccination following completion of this course. CONCLUSIONS: The online vaccine training was well received by the target audience, with a measurable impact on knowledge gained. The key benefits of online training were the convenience, self-paced nature, access to downloadable material, and ability to replay material, as well as an increased ability to concentrate. Online training was identified as a timely, cost-effective way of delivering essential training to a large number of people to prepare for the COVID-19 vaccination rollout.
Asunto(s)
COVID-19 , Educación a Distancia , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2 , Encuestas y Cuestionarios , VacunaciónRESUMEN
Improved influenza vaccines are urgently needed to reduce the burden of seasonal influenza and to ensure a rapid and effective public-health response to future influenza pandemics. The Influenza Vaccines Research and Development (R&D) Roadmap (IVR) was created, through an extensive international stakeholder engagement process, to promote influenza vaccine R&D. The roadmap covers a 10-year timeframe and is organized into six sections: virology; immunology; vaccinology for seasonal influenza vaccines; vaccinology for universal influenza vaccines; animal and human influenza virus infection models; and policy, finance, and regulation. Each section identifies barriers, gaps, strategic goals, milestones, and additional R&D priorities germane to that area. The roadmap includes 113 specific R&D milestones, 37 of which have been designated high priority by the IVR expert taskforce. This report summarizes the major issues and priority areas of research outlined in the IVR. By identifying the key issues and steps to address them, the roadmap not only encourages research aimed at new solutions, but also provides guidance on the use of innovative tools to drive breakthroughs in influenza vaccine R&D.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias , InvestigaciónRESUMEN
INTRODUCTION: As of 2018, 118 of 194 WHO Member States reported the presence of an influenza vaccination policy. Although influenza vaccination policies do not guarantee equitable access or ensure vaccination coverage, they are critical to establishing a coordinated influenza vaccination program, which can reduce morbidity and mortality associated with yearly influenza, especially in high-risk groups. Established programs can also provide a good foundation for pandemic preparedness and response. METHODS: We utilized EXCEL and STATA to evaluate changes to national seasonal influenza vaccination policies reported on the WHO/UNICEF Joint Reporting Forms on Immunization (JRF) in 2014 and 2018. To characterize countries with or without policies, we incorporated external data on World Bank income groupings, WHO regions, and immunization system strength (using 3 proxy indicators). RESULTS: From 2014 to 2018 there was a small net increase in national seasonal influenza vaccination policies from 114 (59%) to 118 (61%). There was an increase in policies targeting high-risk groups from 34 in 2014 (34 /114 policies, 29%) to 56 (56/118 policies, 47%) in 2018. Policies were consistently more frequent in high-income countries, in WHO Regions of the Americas (89% of countries) and Europe (89%), and in countries satisfying all three immunization system strength indicators. Low and low-middle income countries, representing 40% of the worlds' population, accounted for 52/61 (85%) of countries with no evidence of a policy in either year. CONCLUSION: Our results demonstrate that national influenza vaccination policies vary significantly by region, income, and immunization system strength, and are less common in lower-income countries. Barriers to establishing and maintaining policies should be further examined as part of international efforts to expand influenza vaccination policies globally. Next generation influenza vaccine development should work to address barriers to influenza vaccination policy adoption, such as cost, logistics for adult vaccination, country priorities, need for yearly vaccination, and variations in seasonality.
RESUMEN
BACKGROUND: Influenza surveillance helps time prevention and control interventions especially where complex seasonal patterns exist. We assessed influenza surveillance sustainability in Africa where influenza activity varies and external funds for surveillance have decreased. METHODS: We surveyed African Network for Influenza Surveillance and Epidemiology (ANISE) countries about 2011-2017 surveillance system characteristics. Data were summarized with descriptive statistics and analyzed with univariate and multivariable analyses to quantify sustained or expanded influenza surveillance capacity in Africa. RESULTS: Eighteen (75%) of 24 ANISE members participated in the survey; their cumulative population of 710 751 471 represent 56% of Africa's total population. All 18 countries scored a mean 95% on WHO laboratory quality assurance panels. The number of samples collected from severe acute respiratory infection case-patients remained consistent between 2011 and 2017 (13 823 vs 13 674 respectively) but decreased by 12% for influenza-like illness case-patients (16 210 vs 14 477). Nine (50%) gained capacity to lineage-type influenza B. The number of countries reporting each week to WHO FluNet increased from 15 (83%) in 2011 to 17 (94%) in 2017. CONCLUSIONS: Despite declines in external surveillance funding, ANISE countries gained additional laboratory testing capacity and continued influenza testing and reporting to WHO. These gains represent important achievements toward sustainable surveillance and epidemic/pandemic preparedness.
Asunto(s)
Gripe Humana , Infecciones del Sistema Respiratorio , África/epidemiología , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias , Infecciones del Sistema Respiratorio/epidemiología , Encuestas y CuestionariosRESUMEN
Vaccines will be an important element in mitigating the impact of an influenza pandemic. While research towards developing universal influenza vaccines is ongoing, the current strategy for vaccine supply in a pandemic relies on seasonal influenza vaccine production to be switched over to pandemic vaccines. Understanding how much vaccine could be produced, in which regions of the world and in what timeframe is critical to informing influenza pandemic preparedness. Through the Global Action Plan for Influenza Vaccines, 2006-2016, WHO promoted an increase in vaccine production capacity and monitors the landscape through periodically surveying influenza vaccine manufacturers. This study compares global capacity for production of influenza vaccines in 2019 with estimates from previous surveys; provides an overview of countries with established production facilities; presents vaccine production by type and manufacturing process; and discusses limitations to these estimates. Results of the current survey show that estimated annual seasonal influenza vaccine production capacity changed little since 2015 increasing from 1.47 billion to 1.48 billion doses with potential maximum annual influenza pandemic vaccine production capacity increasing from 6.37 billion to 8.31 billion doses. However, this figure should be interpreted with caution as it presents a best-case scenario with several assumptions which may impact supply. Further, pandemic vaccines would not be immediately available and could take four to six months for first supplies with several more months needed to reach maximum capacity. A moderate-case scenario is also presented of 4.15 billion doses of pandemic vaccine in 12 months. It is important to note that two doses of pandemic vaccine are likely to be required to elicit an adequate immune response. Continued efforts are needed to ensure the sustainability of this production and to conduct research for vaccines that are faster to produce and more broadly protective taking into account lessons learned from COVID-19 vaccine development.
Asunto(s)
Salud Global , Vacunas contra la Influenza/provisión & distribución , Gripe Humana/prevención & control , Pandemias/prevención & control , Industria Farmacéutica , Humanos , Organización Mundial de la SaludRESUMEN
BACKGROUND: External quality assessments (EQAs) for the molecular detection of respiratory syncytial virus (RSV) are necessary to ensure the provision of reliable and accurate results. One of the objectives of the pilot of the World Health Organization (WHO) Global RSV Surveillance, 2016-2017, was to evaluate and standardize RSV molecular tests used by participating countries. This paper describes the first WHO RSV EQA for the molecular detection of RSV. METHODS: The WHO implemented the pilot of Global RSV Surveillance based on the WHO Global Influenza Surveillance and Response System (GISRS) from 2016 to 2018 in 14 countries. To ensure standardization of tests, 13 participating laboratories were required to complete a 12 panel RSV EQA prepared and distributed by the Centers for Disease Control and Prevention (CDC), USA. The 14th laboratory joined the pilot late and participated in a separate EQA. Laboratories evaluated a RSV rRT-PCR assay developed by CDC and compared where applicable, other Laboratory Developed Tests (LDTs) or commercial assays already in use at their laboratories. RESULTS: Laboratories performed well using the CDC RSV rRT-PCR in comparison with LDTs and commercial assays. Using the CDC assay, 11 of 13 laboratories reported correct results. Two laboratories each reported one false-positive finding. Of the laboratories using LDTs or commercial assays, results as assessed by Ct values were 100% correct for 1/5 (20%). With corrective actions, all laboratories achieved satisfactory outputs. CONCLUSIONS: These findings indicate that reliable results can be expected from this pilot. Continued participation in EQAs for the molecular detection of RSV is recommended.
Asunto(s)
Garantía de la Calidad de Atención de Salud/estadística & datos numéricos , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Humanos , Laboratorios/normas , Técnicas de Diagnóstico Molecular/normas , Proyectos Piloto , ARN Viral/genética , Virus Sincitial Respiratorio Humano/genética , Organización Mundial de la SaludRESUMEN
BACKGROUND: The World Health Organization Regional Office for Eastern Mediterranean has partnered with the United States Centers for Disease Control and Prevention (CDC) to strengthen pandemic influenza preparedness and response in the Region since 2006. This partnership focuses on pandemic preparedness planning, establishing and enhancing influenza surveillance systems, improving laboratory capacity for detection of influenza viruses, estimating the influenza disease burden, and providing evidence to support policies for the introduction and increased use of seasonal influenza vaccines. METHODS: Various published and unpublished data from public and WHO sources, programme indicators of the CDC cooperative agreement and Pandemic Influenza Preparedness Framework were reviewed and analysed. Analyses and review of the programme indicators and published articles enabled us to generate information that was unavailable from only WHO sources. RESULTS: Most (19/22) countries of the Region have established influenza surveillance system; 16 countries in the Region have designated National Influenza Centres. The Region has seen considerable improvement in geographic coverage of influenza surveillance and influenza detection. Virus sharing has improved and almost all of the participating laboratories have achieved a 100% efficiency score in the WHO external quality assessment programme. At least seven countries have estimated their influenza disease burden using surveillance data and at least 17 are now using seasonal influenza vaccines as a control strategy for influenza illness. CONCLUSION: The Region has achieved substantial progress in surveillance and response to seasonal influenza, despite the adverse effects to the health systems of many countries due to acute and protracted emergencies and other significant challenges.
Asunto(s)
Vacunas contra la Influenza/uso terapéutico , Gripe Humana/epidemiología , Pandemias/prevención & control , Centers for Disease Control and Prevention, U.S. , Control de Enfermedades Transmisibles/métodos , Política de Salud , Humanos , Gripe Humana/prevención & control , Laboratorios , Región Mediterránea/epidemiología , Medio Oriente/epidemiología , Vigilancia en Salud Pública , Infecciones del Sistema Respiratorio/epidemiología , Estados Unidos , Organización Mundial de la SaludRESUMEN
BACKGROUND: Respiratory syncytial virus (RSV)-associated acute lower respiratory infection is a common cause for hospitalization and hospital deaths in young children globally. There is urgent need to generate evidence to inform immunization policies when RSV vaccines become available. The WHO piloted a RSV surveillance strategy that leverages the existing capacities of the Global Influenza Surveillance and Response System (GISRS) to better understand RSV seasonality, high-risk groups, validate case definitions, and develop laboratory and surveillance standards for RSV. METHODS: The RSV sentinel surveillance strategy was piloted in 14 countries. Patients across all age groups presenting to sentinel hospitals and clinics were screened all year-round using extended severe acute respiratory infection (SARI) and acute respiratory infection (ARI) case definitions for hospital and primary care settings, respectively. Respiratory specimens were tested for RSV at the National Influenza Centre (NIC) using standardized molecular diagnostics that had been validated by an External Quality Assurance program. The WHO FluMart data platform was adapted to receive case-based RSV data and visualize interactive visualization outputs. RESULTS: Laboratory standards for detecting RSV by RT-PCR were developed. A review assessed the feasibility and the low incremental costs for RSV surveillance. Several challenges were addressed related to case definitions, sampling strategies, the need to focus surveillance on young children, and the data required for burden estimation. CONCLUSIONS: There was no evidence of any significant adverse impact on the functioning of GISRS which is primarily intended for virologic and epidemiological surveillance of influenza.