RESUMEN
Immune profiling of Nipah virus (NiV) infection survivors is essential for advancing our understanding of NiV pathogenesis, improving diagnostic and therapeutic strategies, and guiding public health efforts to prevent future outbreaks. There is currently limited data available on the immune response to NiV infection. We aimed to elucidate the specific immune mechanisms involved in protection against NiV infection by analyzing the immune profiles of survivors of the Nipah outbreak in Kerala, India 2023. Immune cell populations were quantified and compared between survivors (up to 4 months post onset day of illness) and healthy controls. Statistical analysis was performed to explore associations between immune profiles and clinical outcomes. Immune signatures common to all three cases were: a heretofore undescribed persistent lymphopenia including the CD4+ Treg compartment with the relative expansion of memory Tregs; trends indicative of global leukopenic modulation were observed in monocytes and granulocytes including an expansion of putatively immunosuppressive low-density granulocytes described recently in the context of severe COVID-19; altered mucosal homing with respect to integrin beta-7 (ITGB7) expressing subsets; increased mobilization of activated T-cells (CD4+ and CD8+) and plasmablasts in the early phase of infection. Comparative analysis based on clinical presentation and outcome yielded lower initial viremia, increased activated T-cell responses, expanded plasmablasts, and restoration of ITGB7 expressing CD8+ T-cells as possible protective signatures. This longitudinal study delineates putative protective signatures associated with milder NiV disease. It emphasizes the need for the development of immunotherapeutic interventions such as monoclonal antibodies to blunt early viremia and ameliorate pathogenesis.
Asunto(s)
Brotes de Enfermedades , Infecciones por Henipavirus , Virus Nipah , Humanos , India/epidemiología , Virus Nipah/inmunología , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/epidemiología , Masculino , Adulto , Femenino , Sobrevivientes , Linfocitos T CD8-positivos/inmunología , Persona de Mediana EdadRESUMEN
According to the 2018 WHO R&D Blueprint, Nipah virus (NiV) is a priority disease, and the development of a vaccine against NiV is strongly encouraged. According to criteria used to categorize zoonotic diseases, NiV is a stage III disease that can spread to people and cause unpredictable outbreaks. Since 2001, the NiV virus has caused annual outbreaks in Bangladesh, while in India it has caused occasional outbreaks. According to estimates, the mortality rate for infected individuals ranges from 70 to 91%. Using immunoinformatic approaches to anticipate the epitopes of the MHC-I, MHC-II, and B-cells, they were predicted using the NiV glycoprotein and nucleocapsid protein. The selected epitopes were used to develop a multi-epitope vaccine construct connected with linkers and adjuvants in order to improve immune responses to the vaccine construct. The 3D structure of the engineered vaccine was anticipated, optimized, and confirmed using a variety of computer simulation techniques so that its stability could be assessed. According to the immunological simulation tests, it was found that the vaccination elicits a targeted immune response against the NiV. Docking with TLR-3, 7, and 8 revealed that vaccine candidates had high binding affinities and low binding energies. Finally, molecular dynamic analysis confirms the stability of the new vaccine. Codon optimization and in silico cloning showed that the proposed vaccine was expressed to a high degree in Escherichia coli. The study will help in identifying a potential epitope for a vaccine candidate against NiV. The developed multi-epitope vaccine construct has a lot of potential, but they still need to be verified by in vitro & in vivo studies.
Asunto(s)
Glicoproteínas , Virus Nipah , Vacunas Virales , Virus Nipah/inmunología , Vacunas Virales/inmunología , Glicoproteínas/inmunología , Glicoproteínas/química , Humanos , Infecciones por Henipavirus/prevención & control , Infecciones por Henipavirus/inmunología , Simulación por Computador , Epítopos/inmunología , Epítopos/química , Simulación de Dinámica Molecular , Nucleocápside/inmunología , Simulación del Acoplamiento MolecularRESUMEN
India experienced its sixth Nipah virus (NiV) outbreak in September 2023 in the Kozhikode district of Kerala state. The NiV is primarily transmitted by spillover events from infected bats followed by human-to-human transmission. The clinical specimens were screened using real-time RT-PCR, and positive specimens were further characterized using next-generation sequencing. We describe here an in-depth clinical presentation and management of NiV-confirmed cases and outbreak containment activities. The current outbreak reported a total of six cases with two deaths, with a case fatality ratio of 33.33%. The cases had a mixed presentation of acute respiratory distress syndrome and encephalitis syndrome. Fever was a persistent presentation in all the cases. The Nipah viral RNA was detected in clinical specimens until the post-onset day of illness (POD) 14, with viral load in the range of 1.7-3.3 × 104 viral RNA copies/mL. The genomic analysis showed that the sequences from the current outbreak clustered into the Indian clade similar to the 2018 and 2019 outbreaks. This study highlights the vigilance of the health system to detect and effectively manage the clustering of cases with clinical presentations similar to NiV, which led to early detection and containment activities.
Asunto(s)
Quirópteros , Infecciones por Henipavirus , Virus Nipah , Animales , Humanos , Infecciones por Henipavirus/diagnóstico , Infecciones por Henipavirus/epidemiología , Brotes de Enfermedades , Virus Nipah/genética , India/epidemiología , ARN Viral/genéticaRESUMEN
Introduction: Since 2018, the Indian state of Kerala has reported four Nipah virus (NiV) disease outbreaks, raising concerns about NiV spillover from bats to the human population. Considering this, a cross-sectional study was undertaken in the Pteropus medius bat population around the Nipah virus-affected regions of Kozhikode, Kerala, India, during February, July, and September 2023. Methods: Throat swabs, rectal swabs, and organ samples were collected from bats to test for NiV using the real-time reverse transcriptase polymerase chain reaction (RT-PCR), while serum samples were screened for anti-Nipah IgG antibodies through ELISA. Results: An overall seroprevalence of 20.9% was observed in 272 P. medius bats tested. The throat and rectal swab samples of 321 bats were negative for NiV RNA. However, 4 of 44 P. medius bats tested positive for NiV in their liver/spleen samples. The partial N gene retrieved showed more than 99% similarity with the earlier reported NiV genome from Kerala state, India. Discussion: The findings of the study caution that there is a spillover risk in the region and necessary precautions should be taken.
RESUMEN
BACKGROUND: In this study, we carried out an investigation of Kyasanur Forest Disease (KFD) suspected human cases reported in Karnataka state, India from December 2018 to June 2019. METHODS: The clinical samples of KFD suspected cases (n = 1955) from 14 districts of Karnataka were tested for KFD using real-time RT-PCR and IgM ELISA. Further, the KFD-negative samples were tested for IgM antibodies against dengue and chikungunya viruses. Monkey samples (n = 276) and tick pools (n = 11582) were also screened using real-time RT-PCR. KFD-positive samples were further analysed using next-generation sequencing along with clinico-epidemiological analysis. RESULTS: Of all, 173 (8.8%) cases tested positive for KFD either by real-time RT-PCR (n = 124), IgM ELISA (n = 53) or both tests (n = 4) from seven districts. Among KFD-negative cases, IgM antibody positivity was observed for dengue (2.6%), chikungunya (5.8%), dengue and chikungunya coinfection (3.7%). KFD cases peaked in January 2019 with fever, conjunctivitis, and myalgia as the predominant symptoms and a mortality of 4.6%. Among confirmed cases, 41% received a single dose and 20% received two doses of the KFD vaccine. Of the seven districts with KFDV positivity, Shivamogga and Hassan districts reported KFD viral RNA positivity in humans, monkeys, and ticks. Sequencing analysis of 2019 cases demonstrated a difference of less than 1.5% amino acid compared to prototype KFDV. CONCLUSION: Although the KFD has been endemic in many districts of Karnataka state, our study confirms the presence of KFDV for the first time in two new districts, i.e. Hassan and Mysore. A comparative analysis of KFDV infection among the KFD-vaccinated and non-vaccinated populations demonstrated an insignificant difference.
Asunto(s)
Fiebre Chikungunya , Dengue , Enfermedad del Bosque de Kyasanur , Animales , Humanos , Enfermedad del Bosque de Kyasanur/epidemiología , Enfermedad del Bosque de Kyasanur/diagnóstico , Fiebre Chikungunya/epidemiología , India/epidemiología , Inmunoglobulina M , Haplorrinos , Dengue/epidemiologíaAsunto(s)
Mpox , Humanos , Cinética , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , Inmunoglobulina MRESUMEN
Omicron variant is evolving into numerous sub variants with time and the information on the characteristics of these newly evolving variants are scant. Here we performed a pathogenicity evaluation of Omicron sub variants BA.2.12, BA.5.2 and XBB.1 against the Delta variant in 6-8-week-old Syrian hamster model. Body weight change, viral load in respiratory organs by real time RT-PCR/titration, cytokine mRNA quantification and histopathological evaluation of the lungs were performed. The intranasal infection of the BA.2.12, BA.5.2 and XBB.1 variants in hamster model resulted in body weight loss/reduced weight gain, inflammatory cytokine response and interstitial pneumonia with lesser severity compared to the Delta variant infection. Among the variants studied, BA.2.12 and XBB.1 showed lesser viral shedding through the upper respiratory tract, whereas the BA.5.2 showed comparable viral RNA shedding as that of the Delta variant. The study shows that the Omicron BA.2 sub variants may show difference in disease severity and transmissibility amongst each other whereas the overall disease severity of the Omicron sub variants studied were less compared to the Delta variant. The evolving Omicron sub variants and recombinants should be monitored for their properties.
RESUMEN
Nipah virus (NiV) is a high-risk pathogen which can cause fatal infections in humans. The Indian isolate from the 2018 outbreak in the Kerala state of India showed ~ 4% nucleotide and amino acid difference in comparison to the Bangladesh strains of NiV and the substitutions observed were mostly not present in the region of any functional significance except for the phosphoprotein gene. The differential expression of viral genes was observed following infection in Vero (ATCC® CCL-81™) and BHK-21 cells. Intraperitoneal infection in the 10-12-week-old, Syrian hamster model induced dose dependant multisystemic disease characterized by prominent vascular lesions in lungs, brain, kidney and extra vascular lesions in brain and lungs. Congestion, haemorrhages, inflammatory cell infiltration, thrombosis and rarely endothelial syncitial cell formation were seen in the blood vessels. Intranasal infection resulted in respiratory tract infection characterised by pneumonia. The model showed disease characteristics resembling the human NiV infection except that of myocarditis similar to that reported by NiV-Malaysia and NiV-Bangladesh isolates in hamster model. The variation observed in the genome of the Indian isolate at the amino acid levels should be explored further for any functional significance.
Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Cricetinae , Animales , Humanos , Virus Nipah/genética , Virulencia , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/patología , Mesocricetus , Genómica , Perfilación de la Expresión GénicaRESUMEN
The magnitude and duration of immune response to COVID-19 vaccination in older adults are known to be adversely affected due to immunosenescence and inflammaging. The threat of emerging variants warrants studies on immune response in older adults to primary vaccination and booster doses so as to understand the effectiveness of vaccines in countering the threat of emerging variants. Non-human primates (NHPs) are ideal translational models, as the immunological responses in NHPs are similar to those in humans, so it enables us to understand host immune responses to the vaccine. We initially studied humoral immune responses in aged rhesus macaques employing a three-dose regimen of BBV152, an inactivated SARS-CoV-2 vaccine. Initially, the study investigated whether the third dose enhances the neutralizing antibody (Nab) titer against the homologous virus strain (B.1) and variants of concern (Beta and Delta variants) in aged rhesus macaques immunized with BBV152, adjuvanted with Algel/Algel-IMDG (imidazoquinoline). Later, we also attempted to understand cellular immunity in terms of lymphoproliferation against γ-inactivated SARS-CoV-2 B.1 and delta in naïve and vaccinated rhesus macaques after a year of the third dose. Following the three-dose regimen with 6 µg of BBV152 with Algel-IMDG, animals had increased Nab responses across all SARS-CoV-2 variants studied, which suggested the importance of booster dose for the enhanced immune response against SARS-CoV-2-circulating variants. The study also revealed the pronounced cellular immunity against B.1 and delta variants of SARS-CoV-2 in the aged rhesus macaques even after a year of vaccination.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Humanos , Anciano , Macaca mulatta , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos NeutralizantesRESUMEN
Background & objectives: Focus on non-polio enteroviruses (NPEVs) causing acute flaccid paralysis (AFP) due to myelitis has increased with the containment of the poliovirus. Enterovirus-B88 (EV-B88) has been associated with the AFP cases in Bangladesh, Ghana, South Africa, Thailand and India. In India, EV-B88 infection was linked to AFP a decade ago; however, to date, no complete genome has been made available. In this study, the complete genome sequence of EV-B88 was identified and reported from two different States (Bihar and Uttar Pradesh) in India using the next-generation sequencing technique. Methods: Virus isolation was performed on the three AFP suspected cases as per the WHO-recommended protocol. Samples showing cytopathic effects in the human Rhabdocarcinoma were labelled as NPEVs. Next-generation sequencing was performed on these NPEVs to identify the aetiological agent. The contiguous sequences (contigs) generated were identified, and reference-based mapping was performed. Results: EV-B88 sequences retrieved in our study were found to be 83 per cent similar to the EV-B88 isolate from Bangladesh in 2001 (strain: BAN01-10398; Accession number: AY843306.1). Recombination analyses of these samples demonstrate recombination events with sequences from echovirus-18 and echovirus-30. Interpretation & conclusions: Recombination events in the EV-B serotypes are known, and this work reconfirms the same for EV-B88 isolates also. This study is a step in increasing the awareness about EV-B88 in India and emphasizes future studies to be conducted in the identification of other types of EV present in India.
Asunto(s)
Infecciones por Enterovirus , Enterovirus , Mielitis , Humanos , Enterovirus/genética , alfa-Fetoproteínas/genética , Parálisis , Filogenia , Infecciones por Enterovirus/complicaciones , India , Mielitis/complicaciones , Recombinación GenéticaRESUMEN
The apprehension of needles related to injection site pain, risk of transmitting bloodborne pathogens, and effective mass immunization have led to the development of a needle-free injection system (NFIS). Here, we evaluated the efficacy of the NFIS and needle injection system (NIS) for the delivery and immunogenicity of DNA vaccine candidate ZyCoV-D in rhesus macaques against SARS-CoV-2 infection. Briefly, 20 rhesus macaques were divided into 5 groups (4 animals each), that is, I (1 mg dose by NIS), II (2 mg dose by NIS), III (1 mg dose by NFIS), IV (2 mg dose by NFIS) and V (phosphate-buffer saline [PBS]). The macaques were immunized with the vaccine candidates/PBS intradermally on Days 0, 28, and 56. Subsequently, the animals were challenged with live SARS-CoV-2 after 15 weeks of the first immunization. Blood, nasal swab, throat swab, and bronchoalveolar lavage fluid specimens were collected on 0, 1, 3, 5, and 7 days post infection from each animal to determine immune response and viral clearance. Among all the five groups, 2 mg dose by NFIS elicited significant titers of IgG and neutralizing antibody after immunization with enhancement in their titers postvirus challenge. Besides this, it also induced increased lymphocyte proliferation and cytokine response. The minimal viral load post-SARS-CoV-2 challenge and significant immune response in the immunized animals demonstrated the efficiency of NFIS in delivering 2 mg ZyCoV-D vaccine candidate.
Asunto(s)
COVID-19 , Vacunas de ADN , Vacunas Virales , Animales , SARS-CoV-2 , Macaca mulatta , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Inmunogenicidad VacunalRESUMEN
We describe the clinical and demographic characteristics, virological follow-up, and management of five confirmed monkeypox cases from New Delhi, India without any international travel history. The viral load kinetics and viral clearance were estimated in oropharyngeal swabs (OPS), nasopharyngeal swabs (NPS), EDTA blood, serum, urine, and various lesion specimens on every fourth day of follow-up ranging from 5 to 24 post onset day (POD) of illness. All five cases presented with mild to moderate-grade intermittent fever, myalgia, and lesions on the genitals, groins, lower limb, trunk, and upper limb. Four cases had non-tender firm lymphadenopathy. No secondary complications or sexually transmitted infections were recorded in these cases except for the presence of viral hepatitis B infection marker hepatitis B virus surface antigen (HBsAg) in one case. All the cases were mild and had a good recovery. A higher viral load was detected in lesion fluid (POD 9), followed by lesion roof (POD 9), urine (POD 5), lesion base (POD 5), and OPS/NPS (POD 5). The monkeypox virus (MPXV) DNA was detected in clinical samples from 5th to 24th POD. These monkeypox cases without international travel history suggest the underdiagnosed monkeypox infection in the community. This emphasizes the need for active surveillance of MPXV in the high-risk population such as men having sex with men and female sex workers.
Asunto(s)
Mpox , Trabajadores Sexuales , Enfermedades de Transmisión Sexual , Masculino , Humanos , Femenino , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus/genética , IndiaRESUMEN
Background & objectives: Nipah virus (NiV) is a zoonotic paramyxovirus that causes fatal encephalitis in humans. Enzyme Linked Immunosorbent Assay (ELISA) is a safe, sensitive, specific, and affordable diagnostic tool that can be used during screening of large-scale epidemiological investigations. Development and evaluation of IgM and IgG ELISA for screening serum samples of NiV suspected cases would also help in planning public health interventions. Methods: An IgM capture (MAC) ELISA and an indirect IgG ELISA were developed using NiV antigen to detect IgM and IgG antibodies against NiV in human sera. The sensitivity, specificity, and cross-reactivity of the assays were evaluated using NiV IgM, IgG positive, negative human sera and measles, mumps, rubella, Crimean-Congo haemorrhagic fever, Kyasanur forest disease IgM, IgG positive sera, respectively. Results: The developed anti-NiV IgM and IgG ELISAs have shown specificity of 99.28 per cent and sensitivity of 100 per cent compared to reference test from Centers for Disease Control and Prevention, USA. Assays demonstrated negative predictive value of 100 per cent and positive predictive value as 90 and 93.94 per cent for anti-Nipah IgM ELISA and IgG ELISA respectively with test accuracy of 99.33 per cent. Interpretation & conclusions: Timely diagnosis of NiV is crucial for the management of cases, which could prevent further spread of infection in the community. IgM ELISA can be used as primary diagnostic tool followed by polymerase chain reaction. These assays have advantages of its applicability during outbreak investigations and surveillance activities at hospital or onsite laboratories with basic biosafety practices.
Asunto(s)
Virus Nipah , Humanos , Anticuerpos Antivirales , Inmunoglobulina M , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , Sensibilidad y EspecificidadRESUMEN
The unique mutations of the SARS-CoV-2 Omicron variant are associated with increased transmissibility, immune escape, increased binding affinity to ACE-2, and increased viral load. Omicron exhibited a shift in tropism infecting the upper respiratory tract compared to other variants of concern which have tropism for the lower respiratory tract. The tropism of omicron variants in cell lines of different hosts and tissue origins still remains unclear. Considering this, we assessed the susceptibility of different cell lines to the SARS-CoV-2 omicron BA.1.1 variant and permissiveness among different cell lines for omicron replication. Susceptibility and permissiveness of a total of eleven cell lines, including six animal cell lines and five human cell lines for omicron BA.1.1 infection, were evaluated by infecting individual cell lines with omicron BA.1.1 isolate at a 0.1 multiplicity of infection. Virus replication was assessed by observation of cytopathic effects followed by viral load determination by real-time PCR assay and virus infectivity determination by TCID50 assay. The characteristic cytopathic effect, increased viral load, and productive omicron replication was detected in Vero CCL-81, Vero E6, Vero/hSLAM, MA-104, and Calu-3 cells. Although LLC MK-2 cells showed an increased TCID50 titer at the second infection, the viral load did not show much difference in both infections. Caco-2 cells did not show evident CPE, but they supported omicron replication at a low level. A549, RD, MRC-5, and BHK-21 cells supported omicron BA.1.1 replication without the CPE. This is the first study on the comparison of susceptibility of different cell lines to Omicron variant BA.1.1, which might be useful for future studies on emerging SARS-CoV-2 variants.
RESUMEN
SARS-CoV-2 can be shed in feces and can enter sewage systems. In order to implement effective control measures and identify new channels of transmission, it is essential to identify the presence of infectious virus particles in feces and sewage. In this study, we attempt to utilize Molecular techniques, cell cultures and animal models to find out the infectivity of SARS-CoV-2 in the feces of COVID-19 patients. Our findings exclude the presence of infectious virus particles, suggesting that fecal-oral transmission may not be the main mode of transmission. Larger-scale initiatives are nevertheless required, particularly considering the emergence of new viral strains.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Aguas del Alcantarillado , ARN Viral , HecesRESUMEN
The immunity acquired after natural infection or vaccinations against SARS-CoV-2 tend to wane with time. Here, we compared the protective efficacy of COVAXIN® following two- and three-dose immunizations against the Delta variant and also studied the efficacy of COVAXIN® against Omicron variants in a Syrian hamster model. Despite the comparable neutralizing antibody response against the homologous vaccine strain in both the two-dose and three-dose immunized groups, considerable reduction in the lung disease severity was observed in the 3 dose immunized group after Delta variant challenge. In the challenge study using the Omicron variants, i.e., BA.1.1 and BA.2, lesser virus shedding, lung viral load and lung disease severity were observed in the immunized groups. The present study shows that administration of COVAXIN® booster dose will enhance the vaccine effectiveness against the Delta variant infection and give protection against the BA.1.1 and BA.2 variants.
Asunto(s)
Monkeypox virus , Mpox , Humanos , India/epidemiología , Mpox/diagnóstico , Mpox/epidemiologíaRESUMEN
Antibody detection by serological methods gained a lot of interest in recent years and has become the backbone of virological diagnosis. Despite the detection of all five classes of immunoglobulins in urine, not much attention has been paid to the use of urine as a diagnostic sample to detect viral antibodies. Unlike venipuncture, this non-invasive mode of sample collection can help cover all age groups, especially paediatric and old age patients, where blood collection is difficult. Using urine as a sample is also economical and involves lesser risk in sample collection. The antibodies are found to be stable in urine at room temperature for a prolonged period, which makes the sample transport management easier as well. A few recent studies, have also shown that the detection limit of antibodies in urine is at par with serum or other clinical material. So, the ease in sample collection, availability of samples in large quantity and stability of immunoglobulins in urine for prolonged periods can make urine an ideal sample for viral diagnosis.
Asunto(s)
Anticuerpos Antivirales , Manejo de Especímenes , Niño , HumanosRESUMEN
Background: During the second wave of the COVID-19 pandemic, outbreaks of Zika were reported from Kerala, Uttar Pradesh, and Maharashtra, India in 2021. The Dengue and Chikungunya negative samples were retrospectively screened to determine the presence of the Zika virus from different geographical regions of India. Methods: During May to October 2021, the clinical samples of 1475 patients, across 13 states and a union territory of India were screened and re-tested for Dengue, Chikungunya and Zika by CDC Trioplex Real time RT-PCR. The Zika rRTPCR positive samples were further screened with anti-Zika IgM and Plaque Reduction Neutralization Test. Next generation sequencing was used for further molecular characterization. Results: The positivity was observed for Zika (67), Dengue (121), and Chikungunya (10) amongst screened cases. The co-infections of Dengue/Chikungunya, Dengue/Zika, and Dengue/Chikungunya/Zika were also observed. All Zika cases were symptomatic with fever (84%) and rash (78%) as major presenting symptoms. Of them, four patients had respiratory distress, one presented with seizures, and one with suspected microcephaly at birth. The Asian Lineage of Zika and all four serotypes of Dengue were found in circulation. Conclusion: Our study indicates the spread of the Zika virus to several states of India and an urgent need to strengthen its surveillance.
RESUMEN
Objectives: The emergence of SARS-CoV-2 lineage B.1.617 variants in India has been associated with a surge in the number of daily infections. We investigated the pathogenic potential of Kappa (B.1.617.1) variant in Syrian golden hamsters. Methods: Two groups of Syrian golden hamsters (18 each) were inoculated intranasally with SARS-CoV-2 isolates, B.1 (D614G) and Kappa variant, respectively. The animals were monitored daily for the clinical signs and body weight. Throat swab, nasal wash, and organ samples (lungs, nasal turbinate, trachea) were collected and screened using SARS-CoV-2-specific RT-qPCR. Histopathologic evaluation of the lung samples was performed. Results: The hamsters infected with the Kappa variant demonstrated increased body weight loss compared to the B.1 lineage isolate. The highest viral RNA load was observed in the nasal turbinate and lung specimens of animals infected with both variants. A significantly higher sgRNA load was observed in the nasal swabs (7 DPI), trachea (3 DPI), and lungs (3 DPI) of hamsters infected with the Kappa variant. Neutralizing antibody response generated in the B.1 lineage-infected hamster sera were comparable against both B.1 and Kappa variant in contrast to Kappa variant-infected hamsters, which showed lower titers against B.1 lineage isolate. Gross and microscopic evaluation of the lung specimens showed severe lung lesions in hamsters infected with Kappa variant compared to B.1. Conclusions: The study demonstrates pathogenicity of Kappa variant in hamsters evident with reduced body weight, high viral RNA load in lungs, and pronounced lung lesions. Both Kappa variant- and B.1-infected hamsters produced neutralizing antibodies against both variants studied.