Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Signal ; 120: 111214, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729322

RESUMEN

Age-related diseases are intricately linked to the molecular processes underlying aging, with the decline of the antiaging protein Klotho being a key factor. Investigating these processes is crucial for developing therapeutic strategies. The age-associated reduction in Klotho expression, coupled with a decline in the endocrine hormone triiodothyronine (T3), prompted a detailed exploration of their potential interplay. Our research, conducted through both in-vitro and in-vivo studies on BALB/c mice, unveiled a significant capacity of T3 to upregulate various forms of Klotho via ATF-3/p-c-Jun transcription factor. This effect was particularly noteworthy in aged individuals, where Klotho expression had waned compared to their younger counterparts. Importantly, T3 demonstrated a promising therapeutic impact in rejuvenating Klotho expression in this context. Further investigations elucidated the molecular mechanisms underlying T3's impact on aging-related pathways. In-vitro and in-vivo experiments established T3's ability to downregulate the Wnt/ß-Catenin pathway by enhancing Klotho expression. In-silico analyses provided insights into Klotho's intricate role, showing its capacity to inhibit Wnt ligands such as Wnt3 and Wnt8a, consequently disrupting their interaction with the Wnt receptor. Additionally, T3 was found to downregulate kidney-specific GSK-3ß expression through the augmentation of Klotho expression. The study also highlighted T3's role in maintaining calcium and phosphate homeostasis via Klotho. This comprehensive investigation not only sheds light on the intricate mechanisms governing aging processes but also presents promising avenues for therapeutic interventions targeting the Wnt/ß-Catenin pathway implicated in various age-associated diseases.


Asunto(s)
Glucuronidasa , Riñón , Proteínas Klotho , Ratones Endogámicos BALB C , Triyodotironina , Vía de Señalización Wnt , Proteínas Klotho/metabolismo , Animales , Triyodotironina/metabolismo , Triyodotironina/farmacología , Glucuronidasa/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Riñón/metabolismo , Humanos , Masculino , beta Catenina/metabolismo , Envejecimiento/metabolismo , Simulación por Computador
2.
J Biomol Struct Dyn ; : 1-16, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261742

RESUMEN

Oxidative stress (OS) has been attributed to the progression of various disorders, including cancer, diabetes, and cardiovascular diseases. Several antioxidant compounds and free radical quenchers have been shown to mitigate oxidative stress. However, large-scale randomized controlled trials of such compounds on chronic disease aversion have yielded paradoxical and disappointing results due to the constrained cognizance of their oxidative mechanisms and therapeutic targets. The current study sought to identify the potential therapeutic targets of 7,8-Dihydroxyflavone (7,8-DHF) by analyzing its interactions with the enzymes implicated in oxidative stress and also to explore its radicle quenching potential and prophylactic impact on the H2O2-induced DNA damage. Through the in silco approach, we investigated the antioxidant potential of 7,8-DHF by evaluating its interactions with the human oxidative stress-inducing enzymes such as myeloperoxidase (MPO), NADPH oxidase (NOX), nitric oxide synthase (NOS), and xanthine oxidase (XO) and a comparative analysis of those interactions with known antioxidants (Ascorbic acid, Melatonin, Tocopherol) used as controls. The best-scoring complex was adopted for the simulation analysis in investigating protein-ligand conformational dynamics. The in vitro radicle quenching potential was evaluated by performing a spectrum of antioxidant assays, and radical quenching was observed in a dose-dependent fashion with IC50 values of < 60 µM/mL. Further, we probed its anti-hemolytic potential and prophylactic impact in avian erythrocytes subjected to H2O2-induced hemolysis and DNA damage by implementing hemolysis and comet assays. The protective effect was more pronounced at higher concentrations of the drug.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; 41(24): 15124-15136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883880

RESUMEN

Diabetes, the cause of colossal economic and disease burden, is a key area of research in drug discovery programs. Elevated blood glucose levels in diabetes lead to several adverse consequences due to the formation of advanced glycation end products and free radicals. Vitamin C, a potent antioxidant, protects the body's cells and tissues from oxidative damage and dysfunctions. Glucose is the precursor of Vitamin C synthesis in plants and some mammals. L-gulono lactone oxidase (GULO) is the rate-limiting enzyme in producing Vitamin C. However, it is not synthesized in bats, primates, humans, and guinea pigs because of the pseudogene. Several phytomolecules having antioxidant properties are hypothesized to be promising and selective activators of GULO. Therefore, the present study focused on screening agonists of GULO from phytomolecules as an effective augmentor for Vitamin C synthesis, thereby suppressing the sequela of diabetic events. The 3D structure of GULO was generated by the ab-initio method. Subsequently, molecular docking explored the possible binding patterns of GULO protein with different plant phenolic compounds, followed by supplementation of the potent phytomolecules to diabetic guinea pigs. It is noteworthy that Resveratrol and Hydroxytyrosol showed better binding affinity. The molecular simulation also confirmed that Resveratrol is an activator of the GULO enzyme. Interestingly, it was also established that Vitamin C levels were improved in diabetic guinea pigs supplemented with the phytomolecules and comparatively Resveratrol modulates the concentration of glucose and Vitamin C levels substantially, thereby alleviating hyperglycemia. However, further studies are warranted to study the mechanisms.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Diabetes Mellitus , Mustelidae , Humanos , Animales , Cobayas , Antioxidantes/farmacología , Resveratrol , Simulación del Acoplamiento Molecular , L-Gulonolactona Oxidasa , Ácido Ascórbico , Glucosa
4.
J Biomol Struct Dyn ; 41(2): 493-510, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34871140

RESUMEN

Dengue fever is an endemic virus-borne disease that causes many severe ailments, including dengue hemorrhagic fever and dengue shock syndrome. NS2B-NS3 protease is present in all four strains of the dengue virus. NS2B-NS3 is a non-structural protein that performs three distinct functions: protease activity, helicase activity, and nucleoside triphosphatase activity. NS2B-NS3 pro-complex plays a crucial role in viral replication, and NS2B interacts with NS3 protease at a flat active site with an amino acid of the N-terminal region. NS2B acts as a cofactor for NS3 protease. In the current study, the conserved residues of NS2B were identified. Dengue virus-2 NS2B was mutated at the identified conserved amino acid region to investigate the role of NS2B on activation of NS3 pro. Molecular dynamics simulations were performed to investigate the mutated complex's changes in stability, conformation, and free energy. The EAG mutant complex exhibited more unstable conformation, less hydrogen bond formation, and high binding energy than wild type. This result suggests a vital role of E63, A65, G69 mutation in NS2B for the interruption of activation of the NS3.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/genética , Serina Endopeptidasas/química , Proteínas no Estructurales Virales/química , Dominio Catalítico , Aminoácidos/metabolismo , Replicación Viral/genética , Inhibidores de Proteasas/farmacología
5.
RSC Adv ; 12(27): 17466-17480, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35765450

RESUMEN

A series of novel uracil derivatives such as bispyrimidine dione and tetrapyrimidine dione derivatives were designed based on the existing four-point pharmacophore model as effective HIV capsid protein inhibitors. The compounds were initially docked with an HIV capsid protein monomer to rationalize the ideas of design and to find the potential binding modes. The successful design and computational studies led to the synthesis of bispyrimidine dione and tetrapyrimidine dione derivatives from uracil and aromatic aldehydes in the presence of HCl using novel methodology. The in vitro evaluation in HIV p24 assay revealed five potential uracil derivatives with IC50 values ranging from 191.5 µg ml-1 to 62.5 µg ml-1. The meta-chloro substituted uracil compound 9a showed promising activity with an IC50 value of 62.5 µg ml-1 which is well correlated with the computational studies. As expected, all the active compounds were noncytotoxic in BA/F3 and Mo7e cell lines highlighting the thoughtful design. The structure activity relationship indicates the position priority and lower log P values as the possible cause of inhibitory potential of the uracil compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA