Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Microb Genom ; 9(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37278719

RESUMEN

The genomic diversity of microbes is commonly parameterized as SNPs relative to a reference genome of a well-characterized, but arbitrary, isolate. However, any reference genome contains only a fraction of the microbial pangenome, the total set of genes observed in a given species. Reference-based approaches are thus blind to the dynamics of the accessory genome, as well as variation within gene order and copy number. With the widespread usage of long-read sequencing, the number of high-quality, complete genome assemblies has increased dramatically. In addition to pangenomic approaches that focus on the variation in the sets of genes present in different genomes, complete assemblies allow investigations of the evolution of genome structure and gene order. This latter problem, however, is computationally demanding with few tools available that shed light on these dynamics. Here, we present PanGraph, a Julia-based library and command line interface for aligning whole genomes into a graph. Each genome is represented as a path along vertices, which in turn encapsulate homologous multiple sequence alignments. The resultant data structure succinctly summarizes population-level nucleotide and structural polymorphisms and can be exported into several common formats for either downstream analysis or immediate visualization.


Asunto(s)
Genoma Bacteriano , Genómica
2.
PLoS Comput Biol ; 18(9): e1010561, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36174101

RESUMEN

Selection protocols such as SELEX, where molecules are selected over multiple rounds for their ability to bind to a target of interest, are popular methods for obtaining binders for diagnostic and therapeutic purposes. We show that Restricted Boltzmann Machines (RBMs), an unsupervised two-layer neural network architecture, can successfully be trained on sequence ensembles from single rounds of SELEX experiments for thrombin aptamers. RBMs assign scores to sequences that can be directly related to their fitnesses estimated through experimental enrichment ratios. Hence, RBMs trained from sequence data at a given round can be used to predict the effects of selection at later rounds. Moreover, the parameters of the trained RBMs are interpretable and identify functional features contributing most to sequence fitness. To exploit the generative capabilities of RBMs, we introduce two different training protocols: one taking into account sequence counts, capable of identifying the few best binders, and another based on unique sequences only, generating more diverse binders. We then use RBMs model to generate novel aptamers with putative disruptive mutations or good binding properties, and validate the generated sequences with gel shift assay experiments. Finally, we compare the RBM's performance with different supervised learning approaches that include random forests and several deep neural network architectures.


Asunto(s)
Redes Neurales de la Computación , Trombina , Aprendizaje Automático
3.
Phys Rev E ; 103(5-1): 052413, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34134280

RESUMEN

Affinity maturation (AM) is the process through which the immune system is able to develop potent antibodies against new pathogens it encounters, and is at the base of the efficacy of vaccines. At its core AM is analogous to a Darwinian evolutionary process, where B cells mutate and are selected on the base of their affinity for an antigen (Ag), and Ag availability tunes the selective pressure. In cases when this selective pressure is high, the number of B cells might quickly decrease and the population might risk extinction in what is known as a population bottleneck. Here we study the probability for a B-cell lineage to survive this bottleneck scenario as a function of the progenitor affinity for the Ag. Using recursive relations and probability generating functions we derive expressions for the average extinction time and progeny size for lineages that go extinct. We then extend our results to the full population, both in the absence and presence of competition for T-cell help, and quantify the population survival probability as a function of Ag concentration and initial population size. Our study suggests the population bottleneck phenomenology might represent a limit case in the space of biologically plausible maturation scenarios, whose characterization could help guide the process of vaccine development.


Asunto(s)
Afinidad de Anticuerpos , Linfocitos B/inmunología
4.
Elife ; 92020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538783

RESUMEN

Affinity maturation is a complex dynamical process allowing the immune system to generate antibodies capable of recognizing antigens. We introduce a model for the evolution of the distribution of affinities across the antibody population in germinal centers. The model is amenable to detailed mathematical analysis and gives insight on the mechanisms through which antigen availability controls the rate of maturation and the expansion of the antibody population. It is also capable, upon maximum-likelihood inference of the parameters, to reproduce accurately the distributions of affinities of IgG-secreting cells we measure in mice immunized against Tetanus Toxoid under largely varying conditions (antigen dosage, delay between injections). Both model and experiments show that the average population affinity depends non-monotonically on the antigen dosage. We show that combining quantitative modeling and statistical inference is a concrete way to investigate biological processes underlying affinity maturation (such as selection permissiveness), hardly accessible through measurements.


Asunto(s)
Afinidad de Anticuerpos/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Modelos Inmunológicos , Animales , Afinidad de Anticuerpos/fisiología , Relación Dosis-Respuesta Inmunológica , Femenino , Ratones , Ratones Endogámicos BALB C , Receptores de Antígenos de Linfocitos B/inmunología , Procesos Estocásticos , Toxoide Tetánico/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA