Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
One Health ; 18: 100669, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38283833

RESUMEN

Background: The natural transmission cycle of tick-borne encephalitis (TBE) virus is enhanced by complex interactions between ticks and key hosts strongly connected to habitat characteristics. The diversity of wildlife host species and their relative abundance is known to affect transmission of tick-borne diseases. Therefore, in the current context of global biodiversity loss, we explored the relationship between habitat richness and the pattern of human TBE cases in Europe to assess biodiversity's role in disease risk mitigation. Methods: We assessed human TBE case distribution across 879 European regions using official epidemiological data reported to The European Surveillance System (TESSy) between 2017 and 2021 from 15 countries. We explored the relationship between TBE presence and the habitat richness index (HRI1) by means of binomial regression. We validated our findings at local scale using data collected between 2017 and 2021 in 227 municipalities located in Trento and Belluno provinces, two known TBE foci in northern Italy. Findings: Our results showed a significant parabolic effect of HRI on the probability of presence of human TBE cases in the European regions included in our dataset, and a significant, negative effect of HRI on the local presence of TBE in northern Italy. At both spatial scales, TBE risk decreases in areas with higher values of HRI. Interpretation: To our knowledge, no efforts have yet been made to explore the relationship between biodiversity and TBE risk, probably due to the scarcity of high-resolution, large-scale data about the abundance or density of critical host species. Hence, in this study we considered habitat richness as proxy for vertebrate host diversity. The results suggest that in highly diverse habitats TBE risk decreases. Hence, biodiversity loss could enhance TBE risk for both humans and wildlife. This association is relevant to support the hypothesis that the maintenance of highly diverse ecosystems mitigates disease risk.

2.
Sci Rep ; 13(1): 8262, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217780

RESUMEN

Tick-borne encephalitis (TBE) is caused by a flavivirus that infects animals including humans. In Europe, the TBE virus circulates enzootically in natural foci among ticks and rodent hosts. The abundance of ticks depends on the abundance of rodent hosts, which in turn depends on the availability of food resources, such as tree seeds. Trees can exhibit large inter-annual fluctuations in seed production (masting), which influences the abundance of rodents the following year, and the abundance of nymphal ticks two years later. Thus, the biology of this system predicts a 2-year time lag between masting and the incidence of tick-borne diseases such as TBE. As airborne pollen abundance is related to masting, we investigated whether inter-annual variation in pollen load could be directly correlated with inter-annual variation in the incidence of TBE in human populations with a 2-year time lag. We focused our study on the province of Trento (northern Italy), where 206 TBE cases were notified between 1992 and 2020. We tested the relationship between TBE incidence and pollen load collected from 1989 to 2020 for 7 different tree species common in our study area. Through univariate analysis we found that the pollen quantities recorded two years prior for two tree species, hop-hornbeam (Ostrya carpinifolia) and downy oak (Quercus pubescens), were positively correlated with TBE emergence (R2 = 0.2) while a multivariate model with both tree species better explained the variation in annual TBE incidence (R2 = 0.34). To the best of our knowledge, this is the first attempt at quantifying the correlation between pollen quantities and the incidence of TBE in human populations. As pollen loads are collected by widespread aerobiological networks using standardized procedures, our study could be easily replicated to test their potential as early warning system for TBE and other tick-borne diseases.


Asunto(s)
Ciervos , Encefalitis Transmitida por Garrapatas , Ixodes , Garrapatas , Humanos , Animales , Encefalitis Transmitida por Garrapatas/epidemiología , Italia/epidemiología , Incidencia , Roedores , Árboles , Polen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA