Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1888, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019891

RESUMEN

Two-photon, single-cell resolution optogenetics based on holographic light-targeting approaches enables the generation of precise spatiotemporal neuronal activity patterns and thus a broad range of experimental applications, such as high throughput connectivity mapping and probing neural codes for perception. Yet, current holographic approaches limit the resolution for tuning the relative spiking time of distinct cells to a few milliseconds, and the achievable number of targets to 100-200, depending on the working depth. To overcome these limitations and expand the capabilities of single-cell optogenetics, we introduce an ultra-fast sequential light targeting (FLiT) optical configuration based on the rapid switching of a temporally focused beam between holograms at kHz rates. We used FLiT to demonstrate two illumination protocols, termed hybrid- and cyclic-illumination, and achieve sub-millisecond control of sequential neuronal activation and high throughput multicell illumination in vitro (mouse organotypic and acute brain slices) and in vivo (zebrafish larvae and mice), while minimizing light-induced thermal rise. These approaches will be important for experiments that require rapid and precise cell stimulation with defined spatio-temporal activity patterns and optical control of large neuronal ensembles.


Asunto(s)
Holografía , Pez Cebra , Ratones , Animales , Neuronas/fisiología , Estimulación Luminosa/métodos , Holografía/métodos , Fotones , Optogenética/métodos , Luz
2.
Sci Rep ; 9(1): 7603, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31110187

RESUMEN

In the past 10 years, the use of light has become irreplaceable for the optogenetic study and control of neurons and neural circuits. Optical techniques are however limited by scattering and can only see through a depth of few hundreds µm in living tissues. GRIN lens based micro-endoscopes represent a powerful solution to reach deeper regions. In this work we demonstrate that cutting edge optical methods for the precise photostimulation of multiple neurons in three dimensions can be performed through a GRIN lens. By spatio-temporally shaping a laser beam in the two-photon regime we project several tens of spatially confined targets in a volume of at least 100 × 150 × 300 µm3. We then apply such approach to the optogenetic stimulation of multiple neurons simultaneously in vivo in mice. Our work paves the way for an all-optical investigation of neural circuits in previously inaccessible brain areas.


Asunto(s)
Encéfalo/fisiología , Cristalino/fisiología , Neuronas/fisiología , Animales , Femenino , Lentes , Masculino , Ratones , Optogenética/métodos , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA