Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Commun ; 15(1): 1859, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424099

RESUMEN

Studies suggest that inducing gut microbiota changes may alter both muscle physiology and cognitive behaviour. Gut microbiota may play a role in both anabolic resistance of older muscle, and cognition. In this placebo controlled double blinded randomised controlled trial of 36 twin pairs (72 individuals), aged ≥60, each twin pair are block randomised to receive either placebo or prebiotic daily for 12 weeks. Resistance exercise and branched chain amino acid (BCAA) supplementation is prescribed to all participants. Outcomes are physical function and cognition. The trial is carried out remotely using video visits, online questionnaires and cognitive testing, and posting of equipment and biological samples. The prebiotic supplement is well tolerated and results in a changed gut microbiome [e.g., increased relative Bifidobacterium abundance]. There is no significant difference between prebiotic and placebo for the primary outcome of chair rise time (ß = 0.579; 95% CI -1.080-2.239 p = 0.494). The prebiotic improves cognition (factor score versus placebo (ß = -0.482; 95% CI,-0.813, -0.141; p = 0.014)). Our results demonstrate that cheap and readily available gut microbiome interventions may improve cognition in our ageing population. We illustrate the feasibility of remotely delivered trials for older people, which could reduce under-representation of older people in clinical trials. ClinicalTrials.gov registration: NCT04309292.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Musculares , Anciano , Humanos , Envejecimiento , Cognición , Suplementos Dietéticos , Método Doble Ciego , Microbioma Gastrointestinal/fisiología , Músculos , Persona de Mediana Edad
2.
Gut ; 73(3): 448-458, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38123984

RESUMEN

OBJECTIVE: Patients with Crohn's disease (CD) exhibit great heterogeneity in disease presentation and treatment responses, where distinct gut bacteria and immune interactions may play part in the yet unresolved disease aetiology. Given the role of antibodies in the barrier defence against microbes, we hypothesised that gut bacterial antibody-coating patterns may influence underlying disease-mediated processes. DESIGN: Absolute and relative single and multicoating of gut bacteria with IgA, IgG1, IgG2, IgG3 and IgG4 in patients with CD and healthy controls were characterised and compared with disease activity. IgG2-coated and non-coated taxa from patients with severe CD were identified, profiled for pathogenic characteristics and monitored for enrichment during active disease across cohorts. RESULTS: Patients with severe CD exhibited higher gut bacterial IgG2-coating. Supervised clustering identified 25 bacteria to be enriched in CD patients with high IgG2-coating. Sorting, sequencing and in silico-based assessments of the virulent potential of IgG2-coated and bulk stool bacteria were performed to evaluate the nature and pathogenicity of IgG2-coated and non-coated bacteria. The analyses demonstrated IgG2-coating of both known pathogenic and non-pathogenic bacteria that co-occurred with two non-coated pathobionts, Campylobacter and Mannheimia. The two non-coated pathobionts exhibited low prevalence, rarely coincided and were strongly enriched during disease flares in patients with CD across independent and geographically distant cohorts. CONCLUSION: Distinct gut bacterial IgG2-coating was demonstrated in patients with severe CD and during disease flares. Co-occurrence of non-coated pathobionts with IgG2-coated bacteria points to an uncontrolled inflammatory condition in severe CD mediated via escape from antibody coating by two gut pathobionts.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/patología , Bacterias , Anticuerpos Antibacterianos , Inmunoglobulina G
3.
Nat Commun ; 14(1): 8124, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065985

RESUMEN

Immunoglobulin A (IgA) is acknowledged to play a role in the defence of the mucosal barrier by coating microorganisms. Surprisingly, IgA-deficient humans exhibit few infection-related complications, raising the question if the more specific IgG may help IgM in compensating for the lack of IgA. Here we employ a cohort of IgA-deficient humans, each paired with IgA-sufficient household members, to investigate multi-Ig bacterial coating. In IgA-deficient humans, IgM alone, and together with IgG, recapitulate coating of most bacterial families, despite an overall 3.6-fold lower Ig-coating. Bacterial IgG coating is dominated by IgG1 and IgG4. Single-IgG2 bacterial coating is sparse and linked to enhanced Escherichia coli load and TNF-α. Although single-IgG2 coating is 1.6-fold more prevalent in IgA deficiency than in healthy controls, it is 2-fold less prevalent than in inflammatory bowel disease. Altogether we demonstrate that IgG assists IgM in coating of most bacterial families in the absence of IgA and identify single-IgG2 bacterial coating as an inflammatory marker.


Asunto(s)
Deficiencia de IgA , Humanos , Bacterias , Escherichia coli , Deficiencia de IgA/inmunología , Deficiencia de IgA/microbiología , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M
4.
Parasite Immunol ; 45(7): e12998, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37282739

RESUMEN

Intestinal tuft cells have been shown to induce type 2 immune responses during viable parasite infections, but whether oral supplementation with a parasitic exudate is able to promote type 2 immune responses that have been shown to positively regulate obesogenic metabolic processes is yet unresolved. High-fat fed mice were gavaged with pseudocoelomic fluid (PCF) derived from the helminth Ascaris suum or saline thrice a week during weeks 5-9, followed by examination of intestinal tuft cell activity, immune, and metabolic parameters. Helminth PCF upregulated expression of distinct genes in small intestinal tuft cells, including genes involved in regulation of RUNX1 and organic cation transporters. Helminth PCF also enhanced levels of innate lymphoid cells in the ileum, and eosinophils in epididymal white adipose tissue (eWAT). Network analyses revealed two distinct immunometabolic cues affected by oral helminth PCF in high-fat fed mice: one coupling the small intestinal tuft cell responses to the fat-to-lean mass ratio and a second coupling eosinophils in eWAT to general regulation of body fat mass. Our findings point to specific mechanisms by which oral supplementation with helminth PCF may translate into systems-wide effects linking to reduced body and fat mass gain in mice during high-fat feeding.


Asunto(s)
Helmintos , Inmunidad Innata , Ratones , Animales , Señales (Psicología) , Linfocitos , Tejido Adiposo , Administración Oral
5.
Front Nutr ; 10: 1319873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162520

RESUMEN

Introduction: Bifidobacterium longum subspecies infantis (B. infantis) may play a key role in infant gut development. This trial evaluated safety, tolerability, and efficacy of B. infantis LMG11588 supplementation. Methods: This randomized, placebo-controlled, double-blind study conducted in the Philippines included healthy breastfed and/or formula-fed infants (14-21 days old) randomized for 8 weeks to a control group (CG; n = 77), or any of two B. infantis experimental groups (EGs): low (Lo-EG; 1*108 CFU/day; n = 75) or high dose (Hi-EG; 1.8*1010 CFU/day; n = 76). Primary endpoint was weight gain; secondary endpoints included stooling patterns, gastrointestinal symptoms, adverse events, fecal microbiome, biomarkers, pH, and organic acids. Results: Non-inferiority in weight gain was demonstrated for Hi-EG and Lo-EG vs. CG. Overall, probiotic supplementation promoted mushy-soft stools, fewer regurgitation episodes, and increased fecal acetate production, which was more pronounced in the exclusively breastfed infants (EBF) and positively correlated with B. infantis abundance. In EBF, fecal pro-inflammatory cytokines (IL-1 beta, IL-8) were reduced. Strain-level metagenomic analysis allowed attributing the increased abundance of B. infantis in EGs versus CG, to LMG11588 probiotic colonization. Colonization by autochthonous B. infantis strains was similar between groups. Discussion: B. infantis LMG11588 supplementation was associated with normal infant growth, was safe and well-tolerated and promoted a Bifidobacterium-rich microbiota driven by B. infantis LMG11588 colonization without disturbing the natural dispersal of autochthonous B. infantis strains. In EBF, supplementation stimulated microbial metabolic activity and beneficially modulated enteric inflammation.

6.
Front Oncol ; 12: 953884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059644

RESUMEN

Antibodies targeting the programmed cell death protein-1 (PD-1) molecule have been reported to hold promising antitumor activities in patients with nasopharyngeal carcinoma (NPC). However, only a small subset of NPC patients benefits from the anti-PD-1 monotherapy and factors that affect the treatment response need further investigation. This study aimed to examine the impact of multiple genetic and environmental factors on outcome of anti-PD-1 immunotherapy by identifying tumor size, tumor mutation burden (TMB) based on whole exon sequencing, human leukocyte antigen class I (HLA-I) homo-/heterozygosity and supertypes, blood Epstein-Barr virus (EBV) DNA load, T cell proportions, and interferon-γ(IFN-γ) levels in a cohort of 57 NPC patients that received Nivolumab or Camrelizumab treatment. Moreover, we profiled the longitudinal changes in gut microbiota composition using shotgun metagenomics sequencing. We observed that high TMB combined with HLA-I heterozygosity was associated with improved clinical outcomes. In agreement with previous studies, we found that patients with higher plasma EBV DNA load showed worse progression-free survival. We found no evidence for an effect of gut bacterial diversity on the treatment response, but identified a higher abundance of seven specific gut bacteria at baseline of non-responders, including Blautia wexlera and Blautia obeum, as well as four other bacteria belonging to the Clostridiales order, and one Erysipelatoclostridium. Combined, this study provides insight into the influence of several genetic and environmental factors on anti-PD-1 immunotherapy responses in NPC patients.

7.
Front Oncol ; 12: 837525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530307

RESUMEN

Background: Programmed death 1 (PD-1) and the ligand of PD-1 (PD-L1) are central targets for immune-checkpoint therapy (ICT) blocking immune evasion-related pathways elicited by tumor cells. A number of PD-1 inhibitors have been developed, but the efficacy of these inhibitors varies considerably and is typically below 50%. The efficacy of ICT has been shown to be dependent on the gut microbiota, and experiments using mouse models have even demonstrated that modulation of the gut microbiota may improve efficacy of ICT. Methods: We followed a Han Chinese cohort of 85 advanced non-small cell lung cancer (NSCLC) patients, who received anti-PD-1 antibodies. Tumor biopsies were collected before treatment initiation for whole exon sequencing and variant detection. Fecal samples collected biweekly during the period of anti-PD-1 antibody administration were used for metagenomic sequencing. We established gut microbiome abundance profiles for identification of significant associations between specific microbial taxa, potential functionality, and treatment responses. A prediction model based on random forest was trained using selected markers discriminating between the different response groups. Results: NSCLC patients treated with antibiotics exhibited the shortest survival time. Low level of tumor-mutation burden and high expression level of HLA-E significantly reduced progression-free survival. We identified metagenomic species and functional pathways that differed in abundance in relation to responses to ICT. Data on differential enrichment of taxa and predicted microbial functions in NSCLC patients responding or non-responding to ICT allowed the establishment of random forest algorithm-adopted models robustly predicting the probability of whether or not a given patient would benefit from ICT. Conclusions: Overall, our results identified links between gut microbial composition and immunotherapy efficacy in Chinese NSCLC patients indicating the potential for such analyses to predict outcome prior to ICT.

8.
Nat Microbiol ; 6(11): 1367-1382, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675385

RESUMEN

Breastfeeding profoundly shapes the infant gut microbiota, which is critical for early life immune development, and the gut microbiota can impact host physiology in various ways, such as through the production of metabolites. However, few breastmilk-dependent microbial metabolites mediating host-microbiota interactions are currently known. Here, we demonstrate that breastmilk-promoted Bifidobacterium species convert aromatic amino acids (tryptophan, phenylalanine and tyrosine) into their respective aromatic lactic acids (indolelactic acid, phenyllactic acid and 4-hydroxyphenyllactic acid) via a previously unrecognized aromatic lactate dehydrogenase (ALDH). The ability of Bifidobacterium species to convert aromatic amino acids to their lactic acid derivatives was confirmed using monocolonized mice. Longitudinal profiling of the faecal microbiota composition and metabolome of Danish infants (n = 25), from birth until 6 months of age, showed that faecal concentrations of aromatic lactic acids are correlated positively with the abundance of human milk oligosaccharide-degrading Bifidobacterium species containing the ALDH, including Bifidobacterium longum, B. breve and B. bifidum. We further demonstrate that faecal concentrations of Bifidobacterium-derived indolelactic acid are associated with the capacity of these samples to activate in vitro the aryl hydrocarbon receptor (AhR), a receptor important for controlling intestinal homoeostasis and immune responses. Finally, we show that indolelactic acid modulates ex vivo immune responses of human CD4+ T cells and monocytes in a dose-dependent manner by acting as an agonist of both the AhR and hydroxycarboxylic acid receptor 3 (HCA3). Our findings reveal that breastmilk-promoted Bifidobacterium species produce aromatic lactic acids in the gut of infants and suggest that these microbial metabolites may impact immune function in early life.


Asunto(s)
Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Ácido Láctico/metabolismo , Adulto , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bifidobacterium/química , Bifidobacterium/clasificación , Bifidobacterium/genética , Lactancia Materna , Estudios de Cohortes , Heces/microbiología , Femenino , Humanos , Lactante , Ácido Láctico/química , Masculino , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Adulto Joven
9.
Front Immunol ; 12: 629391, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122403

RESUMEN

Little is known about the involvement of type 2 immune response-promoting intestinal tuft cells in metabolic regulation. We here examined the temporal changes in small intestinal tuft cell number and activity in response to high-fat diet-induced obesity in mice and investigated the relation to whole-body energy metabolism and the immune phenotype of the small intestine and epididymal white adipose tissue. Intake of high fat diet resulted in a reduction in overall numbers of small intestinal epithelial and tuft cells and reduced expression of the intestinal type 2 tuft cell markers Il25 and Tslp. Amongst >1,700 diet-regulated transcripts in tuft cells, we observed an early association between body mass expansion and increased expression of the gene encoding the serine protease inhibitor neuroserpin. By contrast, tuft cell expression of genes encoding gamma aminobutyric acid (GABA)-receptors was coupled to Tslp and Il25 and reduced body mass gain. Combined, our results point to a possible role for small intestinal tuft cells in energy metabolism via coupled regulation of tuft cell type 2 markers and GABA signaling receptors, while being independent of type 2 immune cell involvement. These results pave the way for further studies into interventions that elicit anti-obesogenic circuits via small intestinal tuft cells.


Asunto(s)
Metabolismo Energético , Células Epiteliales/metabolismo , Intestino Delgado/metabolismo , Obesidad/metabolismo , Tejido Adiposo Blanco/inmunología , Tejido Adiposo Blanco/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Regulación de la Expresión Génica , Interleucinas/genética , Interleucinas/metabolismo , Intestino Delgado/inmunología , Masculino , Ratones Endogámicos C57BL , Neuropéptidos/genética , Neuropéptidos/metabolismo , Obesidad/etiología , Obesidad/genética , Obesidad/inmunología , Fenotipo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Serpinas/genética , Serpinas/metabolismo , Transducción de Señal , Factores de Tiempo , Aumento de Peso , Linfopoyetina del Estroma Tímico , Neuroserpina
10.
Sci Rep ; 11(1): 5716, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707503

RESUMEN

While prolonged fasting induces significant metabolic changes in humans and mice, less is known about systems-wide metabolic changes in response to short-term feed deprivation, which is used in experimental animal studies prior to metabolic challenge tests. We here performed a systems biology-based investigation of connections between gut bacterial composition and function, inflammatory and metabolic parameters in the intestine, liver, visceral adipose tissue, blood and urine in high-fat fed, obese mice that were feed deprived up to 12 h. The systems-wide analysis revealed that feed deprivation linked to enhanced intestinal butyric acid production and expression of the gene encoding the pro-thermogenic uncoupling protein UCP1 in visceral adipose tissue of obese mice. Ucp1 expression was also positively associated with Il33 expression in ileum, colon and adipose tissue as well as with the abundance of colonic Porphyromonadaceae, the latter also correlating to cecal butyric acid levels. Collectively, the data highlighted presence of a multi-tiered system of inter-tissue communication involving intestinal, immune and metabolic functions which is affected by feed deprivation in obese mice, thus pointing to careful use of short-feed deprivation in metabolic studies using obese mice.


Asunto(s)
Inanición/patología , Biología de Sistemas , Animales , Bacterias/metabolismo , Ácido Butírico/metabolismo , Ciego/metabolismo , Fermentación , Microbioma Gastrointestinal , Grasa Intraabdominal/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Análisis Multivariante , Factores de Tiempo , Proteína Desacopladora 1/metabolismo
11.
Gastroenterology ; 160(7): 2423-2434.e5, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33662387

RESUMEN

BACKGROUND & AIMS: IgA exerts its primary function at mucosal surfaces, where it binds microbial antigens to regulate bacterial growth and epithelial attachment. One third of individuals with IgA deficiency (IgAD) suffers from recurrent mucosal infections, possibly related to an altered microbiota. We aimed to delineate the impact of IgAD and the IgA-autoantibody status on the composition and functional capacity of the gut microbiota. METHODS: We performed a paired, lifestyle-balanced analysis of the effect of IgA on the gut microbiota composition and functionality based on fecal samples from individuals with IgAD and IgA-sufficient household members (n = 100), involving quantitative shotgun metagenomics, species-centric functional annotation of gut bacteria, and strain-level analyses. We supplemented the data set with 32 individuals with IgAD and examined the influence of IgA-autoantibody status on the composition and functionality of the gut microbiota. RESULTS: The gut microbiota of individuals with IgAD exhibited decreased richness and diversity and was enriched for bacterial species encoding pathogen-related functions including multidrug and antimicrobial peptide resistance, virulence factors, and type III and VI secretion systems. These functional changes were largely attributed to Escherichia coli but were independent of E coli strain variations and most prominent in individuals with IgAD with IgA-specific autoreactive antibodies. CONCLUSIONS: The microbiota of individuals with IgAD is enriched for species holding increased proinflammatory potential, thereby potentially decreasing the resistance to gut barrier-perturbing events. This phenotype is especially pronounced in individuals with IgAD with IgA-specific autoreactive antibodies, thus warranting a screening for IgA-specific autoreactive antibodies in IgAD to identify patients with IgAD with increased risk for gastrointestinal implications.


Asunto(s)
Autoanticuerpos/metabolismo , Microbioma Gastrointestinal/inmunología , Deficiencia de IgA/inmunología , Deficiencia de IgA/microbiología , Inmunoglobulina A/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Immunology ; 159(3): 322-334, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31705653

RESUMEN

Dendritic cells (DCs) are essential for generating T-cell-based immune responses through sensing of potential inflammatory and metabolic cues in the local environment. However, there is still limited insight into the processes defining the resultant DC phenotype, including the type of early transcriptional changes in pro-inflammatory cues towards regulatory or type 2 immune-based cues induced by a variety of exogenous and endogenous molecules. Here we compared the ability of a selected number of molecules to modulate the pro-inflammatory phenotype of lipopolysaccharide (LPS) and interferon-γ (IFN-γ)-stimulated human monocyte-derived DCs towards an anti-inflammatory or regulatory phenotype, including Ascaris suum body fluid [helminth pseudocoelomic fluid (PCF)], the metabolites succinate and butyrate, and the type 2 cytokines thymic stromal lymphopoietin and interleukin-25. Our data show that helminth PCF and butyrate treatment suppress the T helper type 1 (Th1)-inducing pro-inflammatory DC phenotype through induction of different transcriptional programs in DCs. RNA sequencing indicated that helminth PCF treatment strongly inhibited the Th1 and Th17 polarizing ability of LPS + IFN-γ-matured DCs by down-regulating myeloid differentiation primary response gene 88 (MyD88)-dependent and MyD88-independent pathways in Toll-like receptor 4 signaling. By contrast, butyrate treatment had a strong Th1-inhibiting action, and transcripts encoding important gut barrier defending factors such as IL18, IL1B and CXCL8 were up-regulated. Collectively, our results further understanding of how compounds from parasites and gut microbiota-derived butyrate may exert immunomodulatory effects on the host immune system.


Asunto(s)
Ascaris suum/inmunología , Líquidos Corporales/inmunología , Células Dendríticas/inmunología , Mediadores de Inflamación/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Ascaris suum/metabolismo , Ascaris suum/patogenicidad , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/patogenicidad , Líquidos Corporales/metabolismo , Butiratos/farmacología , Comunicación Celular , Citocinas/metabolismo , Citocinas/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Microbioma Gastrointestinal , Interacciones Huésped-Parásitos , Humanos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/farmacología , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Células TH1/metabolismo , Células Th17/metabolismo , Receptor Toll-Like 4/metabolismo
13.
Nat Commun ; 9(1): 4630, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425247

RESUMEN

Adherence to a low-gluten diet has become increasingly common in parts of the general population. However, the effects of reducing gluten-rich food items including wheat, barley and rye cereals in healthy adults are unclear. Here, we undertook a randomised, controlled, cross-over trial involving 60 middle-aged Danish adults without known disorders with two 8-week interventions comparing a low-gluten diet (2 g gluten per day) and a high-gluten diet (18 g gluten per day), separated by a washout period of at least six weeks with habitual diet (12 g gluten per day). We find that, in comparison with a high-gluten diet, a low-gluten diet induces moderate changes in the intestinal microbiome, reduces fasting and postprandial hydrogen exhalation, and leads to improvements in self-reported bloating. These observations suggest that most of the effects of a low-gluten diet in non-coeliac adults may be driven by qualitative changes in dietary fibres.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Glútenes/administración & dosificación , Glútenes/efectos adversos , Adulto , Anciano , Índice de Masa Corporal , Creatinina/orina , Estudios Cruzados , Citocinas/sangre , ADN Bacteriano/análisis , Dinamarca , Ayuno , Heces/microbiología , Femenino , Fermentación , Microbioma Gastrointestinal/genética , Humanos , Hidrógeno , Intestinos/microbiología , Masculino , Metabolómica , Metagenómica , Persona de Mediana Edad , Periodo Posprandial , Autoinforme , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA