Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ecol ; 31(20): 5201-5213, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35962751

RESUMEN

Spatial genetic structure (SGS) is important to a population's ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef-building corals reproduce sexually, but many species also propagate asexually under certain conditions. To understand SGS and the relative importance of reproductive mode across environmental gradients, we evaluated genetic relatedness in almost 600 colonies of Montipora capitata across 30 environmentally characterized sites in Kane'ohe Bay, O'ahu, Hawaii, using low-depth restriction digest-associated sequencing. Clonal colonies were relatively rare overall but influenced SGS. Clones were located significantly closer to one another spatially than average colonies and were more frequent on sites where wave energy was relatively high, suggesting a strong role of mechanical breakage in their formation. Excluding clones, we found no evidence of isolation by distance within sites or across the bay. Several environmental characteristics were significant predictors of the underlying genetic variation (including degree heating weeks, time spent above 30°C, depth, sedimentation rate and wave height); however, they only explained 5% of this genetic variation. Our results show that asexual fragmentation contributes to the ecology of branching corals at local scales and that genetic diversity is maintained despite strong environmental gradients in a highly impacted ecosystem, suggesting potential for broad adaptation or acclimatization in this population.


Asunto(s)
Antozoos , Ecosistema , Animales , Antozoos/genética , Bahías , Estructuras Genéticas , Hawaii
2.
Sci Total Environ ; 825: 153952, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189222

RESUMEN

Kelp forests affect coastal circulation but their influence on upwelling around headlands is poorly understood. Tidal-cycle surveys off two headlands with contrasting kelp coverage illustrated the influence of kelp forests on headland upwelling. Underway acoustic Doppler current and backscatter profiles were collected simultaneously to surface water temperature. Surveys occurred along three off-headland transects in July 25-29, 2018, off Isla Natividad, located midway on the western coast of the Baja California peninsula. Flows and water temperature distributions off the headland with no kelp coverage were consistent with headland upwelling. In contrast, the kelp around the headland with dense coverage: 1) attenuated the ambient flow; 2) favored an increase in effective radius of flow curvature; 3) promoted flow ducting, which consists of enhancing flow through channels unobstructed by kelp; and 4) suppressed headland upwelling. Kelp suppressed upwelling by channeling the flow away from the headland, keeping nearshore waters warmer than offshore. PLAIN LANGUAGE ABSTRACT: This study documents a way in which biology can affect physics in coastal ocean environments. In particular, the study describes how a kelp forest suppresses the upward pumping of cool subsurface waters that is typically found around headlands. Such suppression of subsurface waters injection occurs via a process that we refer to as 'flow ducting.' In flow ducting, coastal flows are channelized through kelp gaps, concentrated in bands <30 m wide, and kept away from the morphological influences of a headland. This ducting is analogous to the tortuous flow through porous media.


Asunto(s)
Kelp , Ecosistema , Bosques , México , Agua
3.
Sci Rep ; 11(1): 10929, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035327

RESUMEN

Declining oxygen is one of the most drastic changes in the ocean, and this trend is expected to worsen under future climate change scenarios. Spatial variability in dissolved oxygen dynamics and hypoxia exposures can drive differences in vulnerabilities of coastal ecosystems and resources, but documentation of variability at regional scales is rare in open-coast systems. Using a regional collaborative network of dissolved oxygen and temperature sensors maintained by scientists and fishing cooperatives from California, USA, and Baja California, Mexico, we characterize spatial and temporal variability in dissolved oxygen and seawater temperature dynamics in kelp forest ecosystems across 13° of latitude in the productive California Current upwelling system. We find distinct latitudinal patterns of hypoxia exposure and evidence for upwelling and respiration as regional drivers of oxygen dynamics, as well as more localized effects. This regional and small-scale spatial variability in dissolved oxygen dynamics supports the use of adaptive management at local scales, and highlights the value of collaborative, large-scale coastal monitoring networks for informing effective adaptation strategies for coastal communities and fisheries in a changing climate.

4.
Ann Rev Mar Sci ; 13: 343-373, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32762591

RESUMEN

The interaction of coral reefs, both chemically and physically, with the surrounding seawater is governed, at the smallest scales, by turbulence. Here, we review recent progress in understanding turbulence in the unique setting of coral reefs-how it influences flow and the exchange of mass and momentum both above and within the complex geometry of coral reef canopies. Flow above reefs diverges from canonical rough boundary layers due to their large and highly heterogeneous roughness and the influence of surface waves. Within coral canopies, turbulence is dominated by large coherent structures that transport momentum both into and away from the canopy, but it is also generated at smaller scales as flow is forced to move around branches or blades, creating wakes. Future work interpreting reef-related observations or numerical models should carefully consider the influence that spatial variation has on momentum and scalar flux.


Asunto(s)
Antozoos/crecimiento & desarrollo , Arrecifes de Coral , Modelos Teóricos , Agua de Mar/química , Movimientos del Agua , Animales
5.
Glob Chang Biol ; 26(12): 6813-6830, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33002274

RESUMEN

High pCO2 habitats and their populations provide an unparalleled opportunity to assess how species may survive under future ocean acidification conditions, and help to reveal the traits that confer tolerance. Here we utilize a unique CO2 vent system to study the effects of exposure to elevated pCO2 on trait-shifts observed throughout natural populations of Astroides calycularis, an azooxanthellate scleractinian coral endemic to the Mediterranean. Unexpected shifts in skeletal and growth patterns were found. Colonies shifted to a skeletal phenotype characterized by encrusting morphology, smaller size, reduced coenosarc tissue, fewer polyps, and less porous and denser skeletons at low pH. Interestingly, while individual polyps calcified more and extended faster at low pH, whole colonies found at low pH site calcified and extended their skeleton at the same rate as did those at ambient pH sites. Transcriptomic data revealed strong genetic differentiation among local populations of this warm water species whose distribution range is currently expanding northward. We found excess differentiation in the CO2 vent population for genes central to calcification, including genes for calcium management (calmodulin, calcium-binding proteins), pH regulation (V-type proton ATPase), and inorganic carbon regulation (carbonic anhydrase). Combined, our results demonstrate how coral populations can persist in high pCO2 environments, making this system a powerful candidate for investigating acclimatization and local adaptation of organisms to global environmental change.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Dióxido de Carbono , Arrecifes de Coral , Concentración de Iones de Hidrógeno , Océanos y Mares , Fenotipo , Agua de Mar
6.
Nature ; 556(7702): 497-500, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670284

RESUMEN

Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing1-3. However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres3,5,6. This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .


Asunto(s)
Artemia/fisiología , Difusión , Agua de Mar/análisis , Natación , Movimientos del Agua , Animales , Euphausiacea/fisiología , Agua de Mar/química , Factores de Tiempo , Zooplancton/fisiología
7.
Environ Sci Technol ; 47(20): 11554-61, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24006887

RESUMEN

Microbial pollutants from coastal discharges can increase illness risks for swimmers and cause beach advisories. There is presently no predictive model for estimating the entrainment of pollution from coastal discharges into the surf zone. We present a novel, quantitative framework for estimating surf zone entrainment of pollution at a wave-dominant open beach. Using physical arguments, we identify a dimensionless parameter equal to the quotient of the surf zone width l(sz) and the cross-flow length scale of the discharge la = M(j) (1/2)/U(sz), where M(j) is the discharge's momentum flux and U(sz) is a representative alongshore velocity in the surf zone. We conducted numerical modeling of a nonbuoyant discharge at an alongshore uniform beach with constant slope using a wave-resolving hydrodynamic model. Using results from 144 numerical experiments we develop an empirical relationship between the surf zone entrainment rate α and l(sz)/(la). The empirical relationship can reasonably explain seven measurements of surf zone entrainment at three diverse coastal discharges. This predictive relationship can be a useful tool in coastal water quality management and can be used to develop predictive beach water quality models.


Asunto(s)
Agua de Mar/química , Contaminantes Químicos del Agua/aislamiento & purificación , California , Colorantes/química , Ríos/química , Factores de Tiempo , Movimientos del Agua
8.
Sci Rep ; 2: 413, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22639723

RESUMEN

Ocean acidification poses multiple challenges for coral reefs on molecular to ecological scales, yet previous experimental studies of the impact of projected CO2 concentrations have mostly been done in aquarium systems with corals removed from their natural ecosystem and placed under artificial light and seawater conditions. The Coral-Proto Free Ocean Carbon Enrichment System (CP-FOCE) uses a network of sensors to monitor conditions within each flume and maintain experimental pH as an offset from environmental pH using feedback control on the injection of low pH seawater. Carbonate chemistry conditions maintained in the -0.06 and -0.22 pH offset treatments were significantly different than environmental conditions. The results from this short-term experiment suggest that the CP-FOCE is an important new experimental system to study in situ impacts of ocean acidification on coral reef ecosystems.


Asunto(s)
Antozoos/metabolismo , Dióxido de Carbono/metabolismo , Arrecifes de Coral , Ecología/métodos , Animales , Antozoos/crecimiento & desarrollo , Carbonato de Calcio/análisis , Geografía , Sedimentos Geológicos/química , Concentración de Iones de Hidrógeno , Islas , Biología Marina/métodos , Rhodophyta/crecimiento & desarrollo , Rhodophyta/metabolismo , Agua de Mar/química , Factores de Tiempo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA