Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Crit Rev Microbiol ; : 1-22, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949254

RESUMEN

Acinetobacter baumannii is a common pathogen associated with hospital-acquired pneumonia showing increased resistance to carbapenem and colistin antibiotics nowadays. Infections with A. baumannii cause high patient fatalities due to their capability to evade current antimicrobial therapies, emphasizing the urgency of developing viable therapeutics to treat A. baumannii-associated pneumonia. In this review, we explore current and novel therapeutic options for overcoming therapeutic failure when dealing with A. baumannii-associated pneumonia. Among them, antibiotic combination therapy administering several drugs simultaneously or alternately, is one promising approach for optimizing therapeutic success. However, it has been associated with inconsistent and inconclusive therapeutic outcomes across different studies. Therefore, it is critical to undertake additional clinical trials to ascertain the clinical effectiveness of different antibiotic combinations. We also discuss the prospective roles of novel antimicrobial therapies including antimicrobial peptides, bacteriophage-based therapy, repurposed drugs, naturally-occurring compounds, nanoparticle-based therapy, anti-virulence strategies, immunotherapy, photodynamic and sonodynamic therapy, for utilizing them as additional alternative therapy while tackling A. baumannii-associated pneumonia. Importantly, these innovative therapies further require pharmacokinetic and pharmacodynamic evaluation for safety, stability, immunogenicity, toxicity, and tolerability before they can be clinically approved as an alternative rescue therapy for A. baumannii-associated pulmonary infections.

2.
Appl Opt ; 63(11): 2831-2836, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856378

RESUMEN

In Parts I [Appl. Opt.58, 6067 (2019)APOPAI0003-693510.1364/AO.58.006067] and II [Appl. Opt.61, 10049 (2022)APOPAI0003-693510.1364/AO.474920], we used a coupled optoelectronic model to optimize a thin-film CIGS solar cell with a graded-bandgap photon-absorbing layer, periodically corrugated backreflector, and multilayered antireflection coatings. Bandgap grading of the CIGS photon-absorbing layer was continuous and either linear or nonlinear, in the thickness direction. Periodic corrugation and multilayered antireflection coatings were found to engender slight improvements in the efficiency. In contrast, bandgap grading of the CIGS photon-absorbing layer leads to significant enhancement of efficiency, especially when the grading is continuous and nonlinear. However, practical implementation of continuous nonlinear grading is challenging compared to piecewise-homogeneous grading. Hence, for this study, we investigated piecewise-homogeneous approximations of the optimal linear and nonlinear grading profiles, and found that an equivalent efficiency is achieved using piecewise-homogeneous grading. An efficiency of 30.15% is predicted with a three-layered piecewise-homogeneous CIGS photon-absorbing layer. The results will help experimentalists to implement optimal designs for highly efficient CIGS thin-film solar cells.

3.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739119

RESUMEN

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Asunto(s)
Antibacterianos , Biopelículas , Ciprofloxacina , Modelos Animales de Enfermedad , Queratitis , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Antibacterianos/farmacología , Porcinos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Biopelículas/efectos de los fármacos , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Ciprofloxacina/farmacología , Gentamicinas/farmacología , Meropenem/farmacología
5.
Appl Opt ; 62(28): 7487-7495, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855518

RESUMEN

In Part I [Appl. Opt.59, 1018 (2020)APOPAI0003-693510.1364/AO.381246], we used a coupled optoelectronic model to optimize a thin-film AlGaAs solar cell with a graded-bandgap photon-absorbing layer and a periodically corrugated Ag backreflector combined with localized ohmic Pd-Ge-Au backcontacts, because both strategies help to improve the performance of AlGaAs solar cells. However, the results in Part I were affected by a normalization error, which came to light when we replaced the hybridizable discontinuous Galerkin scheme for electrical computation by the faster finite-difference scheme. Therefore, we re-optimized the solar cells containing an n-AlGaAs photon-absorbing layer with either a (i) homogeneous, (ii) linearly graded, or (iii) nonlinearly graded bandgap. Another way to improve the power conversion efficiency is by using a surface antireflection texturing on the wavelength scale, so we also optimized four different types of 1D periodic surface texturing: (i) rectangular, (ii) convex hemi-elliptical, (iii) triangular, and (iv) concave hemi-elliptical. Our new results show that the optimal nonlinear bandgap grading enhances the efficiency by as much as 3.31% when the n-AlGaAs layer is 400 nm thick and 1.14% when that layer is 2000 nm thick. A hundredfold concentration of sunlight can enhance the efficiency by a factor of 11.6%. Periodic texturing of the front surface on the scale of 0.5-2 free-space wavelengths provides a small relative enhancement in efficiency over the AlGaAs solar cells with a planar front surface; however, the enhancement is lower when the n-AlGaAs layer is thicker.

6.
mBio ; 14(4): e0148223, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37486132

RESUMEN

Epithelial colonization is a critical first step in bacterial pathogenesis. Staphylococcus aureus can utilize several host factors to associate with cells, including α5ß1 integrin and heparan sulfate proteoglycans, such as the syndecans. Here, we demonstrate that a partner protein of both integrins and syndecans, the host membrane adapter protein tetraspanin CD9, is essential for syndecan-mediated staphylococcal adhesion. Fibronectin is also essential in this process, while integrins are only critical for post-adhesion entry into human epithelial cells. Treatment of epithelial cells with CD9-derived peptide or heparin caused significant reductions in staphylococcal adherence, dependent on both CD9 and syndecan-1. Exogenous fibronectin caused a CD9-dependent increase in staphylococcal adhesion, whereas blockade of ß1 integrins did not affect adhesion but did reduce the subsequent internalization of adhered bacteria. CD9 disruption or deletion increased ß1 integrin-mediated internalization, suggesting that CD9 coordinates sequential staphylococcal adhesion and internalization. CD9 controls staphylococcal adhesion through syndecan-1, using a mechanism that likely requires CD9-mediated syndecan organization to correctly display fibronectin at the host cell surface. We propose that CD9-derived peptides or heparin analogs could be developed as anti-adhesion treatments to inhibit the initial stages of staphylococcal pathogenesis. IMPORTANCE Staphylococcus aureus infection is a significant cause of disease and morbidity. Staphylococci utilize multiple adhesion pathways to associate with epithelial cells, including interactions with proteoglycans or ß1 integrins through a fibronectin bridge. Interference with another host protein, tetraspanin CD9, halves staphylococcal adherence to epithelial cells, although CD9 does not interact directly with bacteria. Here, we define the role of CD9 in staphylococcal adherence and uptake, observing that CD9 coordinates syndecan-1, fibronectin, and ß1 integrins to allow efficient staphylococcal infection. Two treatments that disrupt this action are effective and may provide an alternative to antibiotics. We provide insights into the mechanisms that underlie staphylococcal infection of host cells, linking two known adhesion pathways together through CD9 for the first time.


Asunto(s)
Infecciones Estafilocócicas , Sindecano-1 , Humanos , Sindecano-1/genética , Fibronectinas/metabolismo , Adhesión Celular , Integrinas , Proteínas de la Membrana , Integrina beta1/metabolismo , Heparina , Tetraspaninas , Tetraspanina 29
7.
Ocul Surf ; 32: 211-218, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37406881

RESUMEN

Pseudomonas aeruginosa is a leading cause of corneal infection both within India and globally, often causing a loss of vision. Increasing antimicrobial resistance among the bacteria is making its treatment more difficult. Preventing initial bacterial adherence to the host membrane has been explored here to reduce infection of the cornea. Synthetic peptides derived from human tetraspanin CD9 have been shown to reduce infection in corneal cells both in vitro, ex vivo and in vivo. We found constitutive expression of CD9 in immortalized human corneal epithelial cells by flow cytometry and immunocytochemistry. The synthetic peptides derived from CD9 significantly reduced bacterial adherence to cultured corneal epithelial cells and ex vivo human cadaveric corneas as determined by colony forming units. The peptides also significantly reduced bacterial burden in a murine model of Pseudomonas keratitis and lowered the cellular infiltration in the corneal stroma. Additionally, the peptides aided corneal wound healing in uninfected C57BL/6 mice compared to control mice. These potential therapeutics had no effect on cell viability or proliferation of corneal epithelial cells and have the potential to be developed as an alternative therapeutic intervention.

8.
iScience ; 26(7): 107215, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37496674

RESUMEN

Developing an effective therapy to overcome carbapenemase-positive Klebsiella pneumoniae (CPKp) is an important therapeutic challenge that must be addressed urgently. Here, we explored a Ca-EDTA combination with aztreonam or ceftazidime-avibactam in vitro and in vivo against diverse CPKp clinical isolates. The synergy testing of this study demonstrated that novel aztreonam-Ca-EDTA or ceftazidime-avibactam-Ca-EDTA combination was significantly effective in eliminating planktonic and mature biofilms in vitro, as well as eradicating CPKp infections in vivo. Both combinations revealed significant therapeutic efficacies in reducing bacterial load in internal organs and protecting treated mice from mortality. Conclusively, this is the first in vitro and in vivo study to demonstrate that novel aztreonam-Ca-EDTA or ceftazidime-avibactam-Ca-EDTA combinations provide favorable efficacy and safety for successful eradication of carbapenemase-producing Klebsiella pneumoniae planktonic and biofilm infections.

9.
Microb Pathog ; 178: 106064, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898591

RESUMEN

Persistent antibiotic use results in the rise of antimicrobial resistance with limited or no choice for multidrug-resistant (MDR) and extensively drug resistant (XDR) bacteria. This necessitates a need for alternative therapy to effectively combat clinical pathogens that are resistant to last resort antibiotics. The study investigates hospital sewage as a potential source of bacteriophages to control resistant bacterial pathogens. Eighty-one samples were screened for phages against selected clinical pathogens. Totally, 10 phages were isolated against A. baumannii, 5 phages against K. pneumoniae, and 16 phages were obtained against P. aeruginosa. The novel phages were observed to be strain-specific with complete bacterial growth inhibition of up to 6 h as monotherapy without antibiotics. Phage plus colistin combinations reduced the minimum-biofilm eradication concentration of colistin up to 16 folds. Notably, a cocktail of phages exhibited maximum efficacy with complete killing at 0.5-1 µg/ml colistin concentrations. Thus, phages specific to clinical strains have a higher edge in treating nosocomial pathogens with their proven anti-biofilm efficacy. In addition, analysis of phage genomes revealed close phylogenetic relations with phages reported from Europe, China, and other neighbouring countries. This study serves as a reference and can be extended to other antibiotics and phage types to assess optimum synergistic combinations to combat various drug resistant pathogens in the ongoing AMR crisis.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Colistina/farmacología , Filogenia , Antibacterianos/farmacología , Bacteriófagos/genética , Bacterias
10.
PLoS One ; 17(11): e0277274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36355782

RESUMEN

In mice, CD9 expression on the egg is required for efficient sperm-egg fusion and no effects on ovulation or male fertility are observed in CD9 null animals. Here we show that cd9b knockout zebrafish also appear to have fertility defects. In contrast to mice, fewer eggs were laid by cd9b knockout zebrafish pairs and, of the eggs laid, a lower percentage were fertilised. These effects could not be linked to primordial germ cell numbers or migration as these were not altered in the cd9b mutants. The decrease in egg numbers could be rescued by exchanging either cd9b knockout partner, male or female, for a wildtype partner. However, the fertilisation defect was only rescued by crossing a cd9b knockout female with a wildtype male. To exclude effects of mating behaviour we analysed clutch size and fertilisation using in vitro fertilisation techniques. Number of eggs and fertilisation rates were significantly reduced in the cd9b mutants suggesting the fertility defects are not solely due to courtship behaviours. Our results indicate that CD9 plays a more complex role in fish fertility than in mammals, with effects in both males and females.


Asunto(s)
Interacciones Espermatozoide-Óvulo , Pez Cebra , Masculino , Femenino , Ratones , Animales , Pez Cebra/genética , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , Semen , Fertilidad/genética , Tetraspaninas/metabolismo , Espermatozoides/metabolismo , Mamíferos
11.
Artículo en Inglés | MEDLINE | ID: mdl-36092742

RESUMEN

Background: In low-and-middle income countries, corneal abrasions and ulcers are common and not always well managed. Previous studies showed better clinical outcomes with early presentation and treatment of minor abrasions, however, there have been no formal studies estimating the financial impact of early treatment of abrasions and ulcers compared to delayed treatment. Methods: We used the LV Prasad Eye Institute's (LVPEI's) electronic health record system (eyeSmart) to estimate the impact of early presentation on clinical outcomes associated with abrasions and ulcers. 861 patients with corneal abrasion and 1821 patients with corneal ulcers were studied retrospectively, and 134 patients with corneal abrasion prospectively. A health economic model was constructed based on LVPEI cost data for a range of patient scenarios (from early presentation with abrasion to late presentation with ulcer). Findings: Our findings suggest that delayed presentation of corneal abrasion results in poor clinical and economic outcomes due to increased risk of ulceration requiring more extensive surgical management, increasing associated costs to patients and the healthcare system. However, excellent results at low cost can be achieved by treatment of patients with early presentation of abrasions at village level health care centres. Interpretation: Treatment of early minor corneal abrasions, particularly using local delivery of treatment, is effective clinically and economically. Future investment in making patients aware of the need to react promptly to corneal abrasions by accessing local healthcare resources (coupled with a campaign to prevent ulcerations occurring) will continue to improve clinical outcomes for patients at low cost and avoid complex and more expensive treatment to preserve sight. Funding: This research was funded by the Medical Research Council, grant MR/S004688/1.

13.
Appl Opt ; 61(33): 10049-10061, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36606838

RESUMEN

In Part I [Appl. Opt.58, 6067 (2019)APOPAI003-693510.1364/AO.58.006067], we used a coupled optoelectronic model to optimize a thin-film C u I n 1-ξ G a ξ S e 2 (CIGS) solar cell with a graded-bandgap photon-absorbing layer and a periodically corrugated backreflector. The increase in efficiency due to the periodic corrugation was found to be tiny and that, too, only for very thin CIGS layers. Also, it was predicted that linear bandgap-grading enhances the efficiency of the CIGS solar cells. However, a significant improvement in solar cell efficiency was found using a nonlinearly (sinusoidally) graded-bandgap CIGS photon-absorbing layer. The optoelectronic model comprised two submodels: optical and electrical. The electrical submodel applied the hybridizable discontinuous Galerkin (HDG) scheme directly to equations for the drift and diffusion of charge carriers. As our HDG scheme sometimes fails due to negative carrier densities arising during the solution process, we devised a new, to the best of our knowledge, computational scheme using the finite-difference method, which also reduces the overall computational cost of optimization. An unfortunate normalization error in the electrical submodel in Part I came to light. This normalization error did not change the overall conclusions reported in Part I; however, some specifics did change. The new algorithm for the electrical submodel is reported here along with updated numerical results. We re-optimized the solar cells containing a CIGS photon-absorbing layer with either (i) a homogeneous bandgap, (ii) a linearly graded bandgap, or (iii) a nonlinearly graded bandgap. Considering the meager increase in efficiency with the periodic corrugation and additional complexity in the fabrication process, we opted for a flat backreflector. The new algorithm is significantly faster than the previous algorithm. Our new results confirm efficiency enhancement of 84% (resp. 63%) when the thickness of the CIGS layer is 600 nm (resp. 2200 nm), similarly to Part I. A hundredfold concentration of sunlight can increase the efficiency by an additional 27%. Finally, the currently used 110-nm-thick layer of M g F 2 performs almost as well as optimal single- and double-layer antireflection coatings.

14.
PLoS One ; 16(11): e0260372, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34847198

RESUMEN

Collective cell migration is essential for embryonic development and homeostatic processes. During zebrafish development, the posterior lateral line primordium (pLLP) navigates along the embryo flank by collective cell migration. The chemokine receptors, Cxcr4b and Cxcr7b, as well as their cognate ligand, Cxcl12a, are essential for this process. We corroborate that knockdown of the zebrafish cd9 tetraspanin orthologue, cd9b, results in mild pLL abnormalities. Through generation of CRISPR and TALEN mutants, we show that cd9a and cd9b function partially redundantly in pLLP migration, which is delayed in the cd9b single and cd9a; cd9b double mutants. This delay led to a transient reduction in neuromast numbers. Loss of both Cd9a and Cd9b sensitized embryos to reduced Cxcr4b and Cxcl12a levels. Together these results provide evidence that Cd9 modulates collective cell migration of the pLLP during zebrafish development. One interpretation of these observations is that Cd9 contributes to more effective chemokine signalling.


Asunto(s)
Movimiento Celular , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Tetraspanina 29/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Quimiocina CXCL12/genética , Técnicas de Silenciamiento del Gen , Receptores CXCR4/genética , Tetraspanina 29/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
15.
Cells ; 10(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200372

RESUMEN

Coronaviruses such as SARS-CoV-2, which is responsible for COVID-19, depend on virus spike protein binding to host cell receptors to cause infection. The SARS-CoV-2 spike protein binds primarily to ACE2 on target cells and is then processed by membrane proteases, including TMPRSS2, leading to viral internalisation or fusion with the plasma membrane. It has been suggested, however, that receptors other than ACE2 may be involved in virus binding. We have investigated the interactions of recombinant versions of the spike protein with human epithelial cell lines that express low/very low levels of ACE2 and TMPRSS2 in a proxy assay for interaction with host cells. A tagged form of the spike protein containing the S1 and S2 regions bound in a temperature-dependent manner to all cell lines, whereas the S1 region alone and the receptor-binding domain (RBD) interacted only weakly. Spike protein associated with cells independently of ACE2 and TMPRSS2, while RBD required the presence of high levels of ACE2 for interaction. As the spike protein has previously been shown to bind heparin, a soluble glycosaminoglycan, we tested the effects of various heparins on ACE2-independent spike protein interaction with cells. Unfractionated heparin inhibited spike protein interaction with an IC50 value of <0.05 U/mL, whereas two low-molecular-weight heparins were less effective. A mutant form of the spike protein, lacking the arginine-rich putative furin cleavage site, interacted only weakly with cells and had a lower affinity for unfractionated and low-molecular-weight heparin than the wild-type spike protein. This suggests that the furin cleavage site might also be a heparin-binding site and potentially important for interactions with host cells. The glycosaminoglycans heparan sulphate and dermatan sulphate, but not chondroitin sulphate, also inhibited the binding of spike protein, indicating that it might bind to one or both of these glycosaminoglycans on the surface of target cells.


Asunto(s)
Enzima Convertidora de Angiotensina 2/fisiología , Células Epiteliales/metabolismo , Heparina/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Células CACO-2 , Línea Celular , Chlorocebus aethiops , Dermatán Sulfato/farmacología , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Glicosaminoglicanos/farmacología , Células HEK293 , Células HaCaT , Heparitina Sulfato/farmacología , Humanos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Células Vero , Internalización del Virus/efectos de los fármacos
16.
Appl Opt ; 60(34): 10570-10578, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35200916

RESUMEN

A systematic study was performed with a coupled optoelectronic model to examine the effect of the concentration of sunlight on the efficiencies of CIGS, CZTSSe and AlGaAs thin-film solar cells with a graded-bandgap absorber layer. Efficiencies of 34.6% for CIGS thin-film solar cells and 29.9% for CZTSSe thin-film solar cells are predicted with a concentration of 100 suns, the respective one-sun efficiencies being 27.7% and 21.7%. An efficiency of 36.7% is predicted for AlGaAs thin-film solar cells with a concentration of 60 suns, in comparison to 34.5% one-sun efficiency. Sunlight concentration does not affect the per-sun electron-hole-pair (EHP) generation rate but reduces the per-sun EHP recombination rate either near the front and back faces or in the graded-bandgap regions of the absorber layer, depending upon the semiconductor used for that layer, and this is the primary reason for the improvement in efficiency. Other effects include the enhancement of open-circuit voltage, which can be positively correlated to the higher short-circuit current density. Sunlight concentration can therefore play a significant role in enhancing the efficiency of thin-film solar cells.

17.
Front Microbiol ; 11: 591679, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381089

RESUMEN

Klebsiella pneumoniae is one of the leading causes of nosocomial infections. Carbapenem-resistant K. pneumoniae are on the rise globally. The biofilm forming ability of K. pneumoniae further complicates patient management. There is still a knowledge gap on the association of biofilm formation with patient outcome and carbapenem susceptibility, which is investigated in present study. K. pneumoniae isolates from patients admitted in critical care units with catheters and ventilators were included. K. pneumoniae (n = 72) were subjected to 96-well plate biofilm formation assay followed by MBEC assay for subset of strong biofilm formers. Whole genome sequencing and a core genome phylogenetic analysis in comparison with global isolates were performed. Phenotypic analyses showed a positive correlation between biofilm formation and carbapenem resistance. Planktonic cells observed to be susceptible in vitro exhibited higher MICs in biofilm structure, hence MICs cannot be extrapolated for treatment. The biofilm forming ability had a significant association with morbidity/mortality. Infections by stronger biofilm forming pathogens significantly (p < 0.05) resulted in fewer "average days alive" for the patient (3.33 days) in comparison to those negative for biofilms (11.33 days). Phylogenetic analysis including global isolates revealed clear association of sequence types with genes for biofilm formation and carbapenem resistance. Known hypervirulent clone-ST23 with wcaG, magA, rmpA, rmpA2, and wzc with lack of mutation for hyper-capsulation might be poor biofilm formers. ST15, ST16, ST307, and ST258 (reported global high-risk clones) were wcaJ negative indicating the high potential of biofilm forming capacity. Genes wabG and treC for CPS, bcsA and pgaC for adhesins, luxS for quorum sensing were common in all clades in addition to genes for aerobactin (iutA), allantoin (allS), type I and III fimbriae (fimA, fimH, and mrkD) and pili (pilQ and ecpA). This study is the first of its kind to compare genetic features of antimicrobial resistance with a spectrum covering most of the genetic factors for K. pneumoniae biofilm. These results highlight the importance of biofilm screening to effectively manage nosocomial infections by K. pneumoniae. Further, data obtained on epidemiology and associations of biofilm and resistance genetic factors will serve to enhance our understanding on biofilm mechanisms in K. pneumoniae.

18.
Cells ; 9(11)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182687

RESUMEN

Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host immune response. Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a highly multifactorial and rapidly expanding field that warrants further research. Progression in this field is dependent on the development of suitable biofilm models that acknowledge the complexity of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on non-living surfaces) currently dominate the literature, but co-culture infection models are beginning to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use a variety of different experimental techniques and animal models. In this review, we will discuss existing corneal infection models and their application in the study of biofilms and host-pathogen interactions at the corneal surface.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Córnea/microbiología , Queratitis/microbiología , Córnea/patología , Humanos
19.
Sci Rep ; 10(1): 17972, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087788

RESUMEN

Tetraspanins are four-span transmembrane proteins of host cells that facilitate infections by many pathogens. Burkholderia pseudomallei is an intracellular bacterium and the causative agent of melioidosis, a severe disease in tropical regions. This study investigated the role of tetraspanins in B. pseudomallei infection. We used flow cytometry to determine tetraspanins CD9, CD63, and CD81 expression on A549 and J774A.1 cells. Their roles in B. pseudomallei infection were investigated in vitro using monoclonal antibodies (MAbs) and recombinant large extracellular loop (EC2) proteins to pretreat cells before infection. Knockout of CD9 and CD81 in cells was performed using CRISPR Cas9 to confirm the role of tetraspanins. Pretreatment of A549 cells with MAb against CD9 and CD9-EC2 significantly enhanced B. pseudomallei internalization, but MAb against CD81 and CD81-EC2 inhibited MNGC formation. Reduction of MNGC formation was consistently observed in J774.A1 cells pretreated with MAbs specific to CD9 and CD81 and with CD9-EC2 and CD81-EC2. Data from knockout experiments confirmed that CD9 enhanced bacterial internalization and that CD81 inhibited MNGC formation. Our data indicate that tetraspanins are host cellular factors that mediated internalization and membrane fusion during B. pseudomallei infection. Tetraspanins may be the potential therapeutic targets for melioidosis.


Asunto(s)
Burkholderia pseudomallei/patogenicidad , Fusión Celular , Melioidosis/microbiología , Fagocitos/fisiología , Tetraspaninas/fisiología , Células A549 , Anticuerpos Monoclonales , Sistemas CRISPR-Cas , Células Cultivadas , Células Gigantes/microbiología , Humanos , Melioidosis/terapia , Tetraspanina 28 , Tetraspanina 29 , Tetraspaninas/metabolismo
20.
Med Microbiol Immunol ; 209(5): 643-652, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32495068

RESUMEN

In the original article, incorrect  figures were published with incorrect captions. The correct figures and captions are given below.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA