Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928215

RESUMEN

Citrate, which is obtained from oxaloacetate and acetyl-CoA by citrate synthase in mitochondria, plays a key role in both normal and cancer cell metabolism. In this work, we investigated the effect of 10 mM extracellular citrate supplementation on HepG2 cells. Gene expression reprogramming was evaluated by whole transcriptome analysis using gene set enrichment analysis (GSEA). The transcriptomic data were validated through analyzing changes in the mRNA levels of selected genes by qRT-PCR. Citrate-treated cells exhibited the statistically significant dysregulation of 3551 genes; 851 genes were upregulated and 822 genes were downregulated. GSEA identified 40 pathways affected by differentially expressed mRNAs. The most affected biological processes were related to lipid and RNA metabolism. Several genes of the cytochrome P450 family were upregulated in treated cells compared to controls, including the CYP3A5 gene, a tumor suppressor in hepatocellular carcinoma (HCC) that plays an important protective role in HCC metastasis. The citrate-induced dysregulation of cytochromes could both improve the effectiveness of chemotherapeutics used in combination and reduce the aggressiveness of tumors by diminishing cell migration and invasion.


Asunto(s)
Movimiento Celular , Ácido Cítrico , Regulación Neoplásica de la Expresión Génica , Humanos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Hep G2 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácido Cítrico/farmacología , Ácido Cítrico/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Invasividad Neoplásica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Transcriptoma , Perfilación de la Expresión Génica
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256207

RESUMEN

Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and it plays a crucial role in the folding of ER proteins. Previously, the C-terminal region of URG7 (PU, residues 75-99) has been shown to modify the aggregation state of α-synuclein in the lysate of HepG2 cells. PU analogs were synthesized, and their anti-aggregation potential was tested in vitro on α-synuclein obtained using recombinant DNA technology. Circular dichroism (CD), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and microscopic techniques were used to assess the sample's behavior. The results show that the peptides studied by themselves are prone to clathrate-like structure formation of variable stability. Aggregation of α-synuclein is accompanied by desolvation of its peptide chain and an increase in intermolecular ß-sheets. The PU analogs all interact with α-synuclein aggregates and those possessing the most stable clathrate-like structures have the highest disaggregating effect. These findings suggest that the C-terminal region of URG7 may have a role in interacting and modulating α-synuclein structures and could be used to generate interesting therapeutic candidates as disaggregators of α-synuclein.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Péptidos , alfa-Sinucleína , alfa-Sinucleína/genética , Hidrocarburos Aromáticos con Puentes , Retículo Endoplásmico , Péptidos/farmacología , Seudogenes , Humanos , Células Hep G2 , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
3.
Biomol Concepts ; 14(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909122

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus belonging to the coronavirus family responsible for coronavirus disease 2019 (COVID-19). It primarily affects the pulmonary system, which is the target of chronic obstructive pulmonary disease (COPD), for which many new compounds have been developed. In this study, phosphodiesterase 4 (PDE4) inhibitors are being investigated. The inhibition of PDE4 enzyme produces anti-inflammatory and bronchodilator effects in the lung by inducing an increase in cAMP concentrations. Piclamilast and rolipram are known selective inhibitors of PDE4, which are unfortunately endowed with common side effects, such as nausea and emesis. The selective inhibition of the phosphodiesterase 4B (PDE4B) subtype may represent an intriguing technique for combating this highly contagious disease with fewer side effects. In this article, molecular docking studies for the selective inhibition of the PDE4B enzyme have been carried out on 21 in-house compounds. The compounds were docked into the pocket of the PDE4B catalytic site, and in most cases, they were almost completely superimposed onto piclamilast. Then, in order to enlarge our study, drug-likeness prediction studies were performed on the compounds under study.


Asunto(s)
COVID-19 , Inhibidores de Fosfodiesterasa 4 , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Simulación del Acoplamiento Molecular , Inhibidores de Fosfodiesterasa 4/farmacología , SARS-CoV-2
4.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36916992

RESUMEN

Mitochondrial carriers (MCs) belong to a eukaryotic protein family of transporters that in higher organisms is called the solute carrier family 25 (SLC25). All MCs have characteristic triplicated sequence repeats forming a 3-fold symmetrical structure of a six-transmembrane α-helix bundle with a centrally located substrate-binding site. Biochemical characterization has shown that MCs altogether transport a wide variety of substrates but can be divided into subfamilies, each transporting a few specific substrates. We have investigated the intron positions in the human MC genes and their orthologs of highly diversified organisms. The results demonstrate that several intron positions are present in numerous MC sequences at the same specific points, of which some are 3-fold symmetry related. Many of these frequent intron positions are also conserved in subfamilies or in groups of subfamilies transporting similar substrates. The analyses of the frequent and conserved intron positions in MCs suggest phylogenetic relationships not only between close but also distant homologs as well as a possible involvement of the intron positions in the evolution of the substrate specificity diversification of the MC family members.


Asunto(s)
Proteínas de Transporte de Membrana , Mitocondrias , Humanos , Intrones , Filogenia , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana/genética , Eucariontes/genética , Evolución Molecular , Secuencia Conservada
5.
J Virol Methods ; 315: 114704, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36842487

RESUMEN

Lentiviruses, including equine infectious anemia virus (EIAV), are considered viral quasispecies because of their intrinsic genetic, structural and phenotypic variability. Immunoenzymatic tests (ELISA) for EIAV reported in the literature were obtained mainly by using the capsid protein p26, which is derived almost exclusively from a single strain (Wyoming), and do not reflect the great potential epitopic variability of the EIAV quasispecies. In this investigation, the GenBank database was exploited in a systematic approach to design a set of representative protein antigens useful for EIAV serodiagnosis. The main bioinformatic tools used were clustering, molecular modelling, epitope predictions and aggregative/ solubility predictions. This approach led to the design of two antigenic proteins, i.e. a full sequence p26 capsid protein and a doublestrain polypeptide derived from the gp45 transmembrane protein fused to Maltose Binding Protein (MBP) that were expressed by recombinant DNA technology starting from synthetic genes, and analyzed by circular dichroism (CD) spectroscopy. Both proteins were used in an indirect ELISA test that can address some of the high variability of EIAV. The novel addition of the gp45 double-strain antigen contributed to enhance the diagnostic sensitivity and could be also useful for immunoblotting application.


Asunto(s)
Anemia Infecciosa Equina , Virus de la Anemia Infecciosa Equina , Caballos , Animales , Anemia Infecciosa Equina/diagnóstico , Proteínas de la Cápside , Virus de la Anemia Infecciosa Equina/genética , Pruebas Serológicas/veterinaria , Péptidos
6.
Plants (Basel) ; 12(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679017

RESUMEN

Several specialized plant metabolites are reported to be enzyme inhibitors. In this investigation, the phytochemical composition and the biological activity of Rhanterium suaveolens Desf. were studied. One new lignan (rhanteriol 1) and seven known secondary metabolites were isolated from the aerial parts of R. suaveolens by using different chromatographic procedures. The biological properties of the R. suaveolens extracts and the new compound were evaluated by measuring their ability to inhibit the cholinesterase and carbohydrate-hydrolyzing enzymes, using cell-free in vitro methods. The new lignan, rhanteriol, was shown to inhibit α-amylase and α-glucosidase (IC50 = 46.42 ± 3.25 µM and 26.76 ± 3.29 µM, respectively), as well as butyrylcholinesterase (IC50 = 10.41 ± 0.03 µM), with an effect comparable to that of the respective standards, acarbose and galantamine. Furthermore, docking studies were performed suggesting the interaction mode of rhanteriol with the active sites of the investigated enzymes. The obtained data demonstrated that the aerial part of R. suaveolens could represent a source of active molecules, such as rhanteriol, usable in the development of treatments for preventing or treating type 2 diabetes mellitus and neurodegeneration.

7.
IUBMB Life ; 74(7): 573-591, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35730628

RESUMEN

S-adenosyl-L-methionine (SAM) is a coenzyme and the most commonly used methyl-group donor for the modification of metabolites, DNA, RNA and proteins. SAM biosynthesis and SAM regeneration from the methylation reaction product S-adenosyl-L-homocysteine (SAH) take place in the cytoplasm. Therefore, the intramitochondrial SAM-dependent methyltransferases require the import of SAM and export of SAH for recycling. Orthologous mitochondrial transporters belonging to the mitochondrial carrier family have been identified to catalyze this antiport transport step: Sam5p in yeast, SLC25A26 (SAMC) in humans, and SAMC1-2 in plants. In mitochondria SAM is used by a vast number of enzymes implicated in the following processes: the regulation of replication, transcription, translation, and enzymatic activities; the maturation and assembly of mitochondrial tRNAs, ribosomes and protein complexes; and the biosynthesis of cofactors, such as ubiquinone, lipoate, and molybdopterin. Mutations in SLC25A26 and mitochondrial SAM-dependent enzymes have been found to cause human diseases, which emphasizes the physiological importance of these proteins.


Asunto(s)
Mitocondrias , S-Adenosilmetionina , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Proteínas de Unión al Calcio/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , S-Adenosilmetionina/metabolismo
8.
Int J Mol Sci ; 23(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35563451

RESUMEN

Mitochondrial carriers, which transport metabolites, nucleotides, and cofactors across the mitochondrial inner membrane, have six transmembrane α-helices enclosing a translocation pore with a central substrate binding site whose access is controlled by a cytoplasmic and a matrix gate (M-gate). The salt bridges formed by the three PX[DE]XX[RK] motifs located on the odd-numbered transmembrane α-helices greatly contribute to closing the M-gate. We have measured the transport rates of cysteine mutants of the charged residue positions in the PX[DE]XX[RK] motifs of the bovine oxoglutarate carrier, the yeast GTP/GDP carrier, and the yeast NAD+ transporter, which all lack one of these charged residues. Most single substitutions, including those of the non-charged and unpaired charged residues, completely inactivated transport. Double mutations of charged pairs showed that all three carriers contain salt bridges non-essential for activity. Two double substitutions of these non-essential charge pairs exhibited higher transport rates than their corresponding single mutants, whereas swapping the charged residues in these positions did not increase activity. The results demonstrate that some of the residues in the charged residue positions of the PX[DE]XX[KR] motifs are important for reasons other than forming salt bridges, probably for playing specific roles related to the substrate interaction-mediated conformational changes leading to the M-gate opening/closing.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales , Proteínas Mitocondriales , Secuencias de Aminoácidos/fisiología , Animales , Bovinos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Conformación Proteica en Hélice alfa/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
IUBMB Life ; 74(7): 592-617, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35304818

RESUMEN

Multiple mitochondrial matrix enzymes playing key roles in metabolism require cofactors for their action. Due to the high impermeability of the mitochondrial inner membrane, these cofactors need to be synthesized within the mitochondria or be imported, themselves or one of their precursors, into the organelles. Transporters belonging to the protein family of mitochondrial carriers have been identified to transport the coenzymes: thiamine pyrophosphate, coenzyme A, FAD and NAD+ , which are all structurally similar to nucleotides and derived from different B-vitamins. These mitochondrial cofactors bind more or less tightly to their enzymes and, after having been involved in a specific reaction step, are regenerated, spontaneously or by other enzymes, to return to their active form, ready for the next catalysis round. Disease-causing mutations in the mitochondrial cofactor carrier genes compromise not only the transport reaction but also the activity of all mitochondrial enzymes using that particular cofactor and the metabolic pathways in which the cofactor-dependent enzymes are involved. The mitochondrial transport, metabolism and diseases of the cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD+ are the focus of this review.


Asunto(s)
Coenzima A , Tiamina Pirofosfato , Flavina-Adenina Dinucleótido/metabolismo , NAD/metabolismo , Tiamina Pirofosfato/metabolismo , Vitaminas
10.
Cells ; 10(11)2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34831275

RESUMEN

Background: Several pre-clinical and clinical reports suggest that HIV-1 protease inhibitors, in addition to the antiretroviral properties, possess pleiotropic pharmacological effects including anticancer action. Therefore, we investigated the pro-apoptotic activity in tumor cells of two molecules, RDD-19 and RDD-142, which are hydroxyethylamine derivatives' precursors of darunavir and several HIV-1 protease inhibitors. Methods: Three hepatoma cell lines and one non-pathological cell line were treated with RDD-19 and RDD-142, and cell viability was assessed. The expression levels of several markers for ER stress, autophagy, cellular ubiquitination, and Akt activation were quantified in HepG2 cells treated with RDD-19 and RDD-142 to evaluate apoptotic and non-apoptotic cell death. Results: RDD-19 and RDD-142 showed a greater dose-dependent cytotoxicity towards the hepatic tumor cell line HepG2 compared to the non-pathological hepatic cell line IHH. Both molecules caused two types of cell death, a caspase-dependent apoptosis, which was ascertained by a series of biochemical and morphological assays, and a caspase-independent death that was characterized by the induction of ER stress and autophagy. The strong increase of ubiquitinated proteins inside the cells suggested that the target of these molecules could be the proteasome and in silico molecular docking analysis that was used to support the plausibility of this hypothesis. Furthermore, cells treated with the two compounds displayed decreased levels of p-AKT, which interferes with cell survival and proliferation. Conclusions: These findings demonstrate that two compounds, RDD-19 and RDD-142, have pleiotropic effects and that they may represent promising anticancer candidates.


Asunto(s)
Carcinoma Hepatocelular/patología , Darunavir/farmacología , VIH-1/efectos de los fármacos , Neoplasias Hepáticas/patología , Inhibidores de Proteasas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Respuesta de Proteína Desplegada , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Sitios de Unión , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Respuesta de Proteína Desplegada/efectos de los fármacos
11.
J Virol Methods ; 297: 114266, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454989

RESUMEN

Due to their intrinsic genetic, structural and phenotypic variability the Lentiviruses, and specifically small ruminant lentiviruses (SRLV), are considered viral quasispecies with a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra or mutant cloud. Immunoenzymatic tests for SRLVs are available but the dynamic heterogeneity of the virus makes the development of a diagnostic "golden standard" extremely difficult. The ELISA reported in the literature have been obtained using proteins derived from a single strain or they are multi-strain based assay that may increase the sensitivity of the serological diagnosis. Hundreds of SRLV protein sequences derived from different viral strains are deposited in GenBank. The aim of this study is to verify if the database can be exploited with the help of bioinformatics in order to have a more systematic approach in the design of a set of representative protein antigens useful in the SRLV serodiagnosis. Clustering, molecular modelling, molecular dynamics, epitope predictions and aggregative/solubility predictions were the main bioinformatic tools used. This approach led to the design of SRLV antigenic proteins that were expressed by recombinant DNA technology using synthetic genes, analyzed by CD spectroscopy, tested by ELISA and preliminarily compared to currently commercially available detection kits.


Asunto(s)
Enfermedades de las Cabras , Infecciones por Lentivirus , Enfermedades de las Ovejas , Animales , Biología Computacional , Enfermedades de las Cabras/diagnóstico , Cabras , Lentivirus/genética , Infecciones por Lentivirus/diagnóstico , Péptidos , Rumiantes , Pruebas Serológicas , Ovinos , Enfermedades de las Ovejas/diagnóstico
12.
Biomolecules ; 11(6)2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198503

RESUMEN

Subcellular compartmentation is a fundamental property of eukaryotic cells. Communication and metabolic and regulatory interconnectivity between organelles require that solutes can be transported across their surrounding membranes. Indeed, in mammals, there are hundreds of genes encoding solute carriers (SLCs) which mediate the selective transport of molecules such as nucleotides, amino acids, and sugars across biological membranes. Research over many years has identified the localization and preferred substrates of a large variety of SLCs. Of particular interest has been the SLC25 family, which includes carriers embedded in the inner membrane of mitochondria to secure the supply of these organelles with major metabolic intermediates and coenzymes. The substrate specificity of many of these carriers has been established in the past. However, the route by which animal mitochondria are supplied with NAD+ had long remained obscure. Only just recently, the existence of a human mitochondrial NAD+ carrier was firmly established. With the realization that SLC25A51 (or MCART1) represents the major mitochondrial NAD+ carrier in mammals, a long-standing mystery in NAD+ biology has been resolved. Here, we summarize the functional importance and structural features of this carrier as well as the key observations leading to its discovery.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , NAD/metabolismo , Proteínas Transportadoras de Solutos/metabolismo , Transporte Biológico/genética , Humanos , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , NAD/genética , Proteínas Transportadoras de Solutos/genética
13.
Phytochemistry ; 187: 112781, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33930668

RESUMEN

Metabolic syndrome has several characteristic manifestations, including insulin resistance and dyslipidaemia, that demand therapeutic approaches, such as the inhibition of enzymes involved in nutrient absorption and digestion.This study aimed to evaluate the potential pharmacological use of natural compounds widespread in the plant kingdom and their semisynthetic compounds against target enzymes. Twenty-three oxyprenylated natural compoundswere investigated for their ability to inhibit α-amylase, α-glucosidase, and pancreatic lipase enzymes by in vitro assays. Moreover, in silico molecular docking was performed to analyse their binding capabilities into 3D structures. Farnesyloxyferulic acid, geranyloxyvanillic acid, nelumal A, and geranyloxyferulic acid showed the highest inhibition activity in all three in vitro enzyme assays. Moreover, in silico molecular docking of these four compounds was used to analyse their possible binding in 3D structures of the investigated enzymes. The results indicate that these compounds have considerable therapeutic potential for the treatment of metabolic syndrome, and further studies are warranted for their pharmacological development.


Asunto(s)
alfa-Amilasas , alfa-Glucosidasas , Simulación por Computador , Inhibidores de Glicósido Hidrolasas/farmacología , Lipasa , Simulación del Acoplamiento Molecular
14.
Biomolecules ; 10(4)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340404

RESUMEN

In the 1980s, after the mitochondrial DNA (mtDNA) had been sequenced, several diseases resulting from mtDNA mutations emerged. Later, numerous disorders caused by mutations in the nuclear genes encoding mitochondrial proteins were found. A group of these diseases are due to defects of mitochondrial carriers, a family of proteins named solute carrier family 25 (SLC25), that transport a variety of solutes such as the reagents of ATP synthase (ATP, ADP, and phosphate), tricarboxylic acid cycle intermediates, cofactors, amino acids, and carnitine esters of fatty acids. The disease-causing mutations disclosed in mitochondrial carriers range from point mutations, which are often localized in the substrate translocation pore of the carrier, to large deletions and insertions. The biochemical consequences of deficient transport are the compartmentalized accumulation of the substrates and dysfunctional mitochondrial and cellular metabolism, which frequently develop into various forms of myopathy, encephalopathy, or neuropathy. Examples of diseases, due to mitochondrial carrier mutations are: combined D-2- and L-2-hydroxyglutaric aciduria, carnitine-acylcarnitine carrier deficiency, hyperornithinemia-hyperammonemia-homocitrillinuria (HHH) syndrome, early infantile epileptic encephalopathy type 3, Amish microcephaly, aspartate/glutamate isoform 1 deficiency, congenital sideroblastic anemia, Fontaine progeroid syndrome, and citrullinemia type II. Here, we review all the mitochondrial carrier-related diseases known until now, focusing on the connections between the molecular basis, altered metabolism, and phenotypes of these inherited disorders.


Asunto(s)
Enfermedad/genética , Proteínas Mitocondriales/genética , Mutación/genética , Secuencia de Aminoácidos , Humanos , Proteínas Mitocondriales/química , Modelos Moleculares , Herencia Multifactorial/genética
15.
Foods ; 9(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024045

RESUMEN

The genus Minthostachys belonging to the Lamiaceae family, and is an important South American mint genus used commonly in folk medicine as an aroma in cooking. The phytochemical-rich samples of the aerial parts of Minthostachys diffusa Epling. were tested for pharmacological and health-promoting bioactivities using in vitro chemical and enzymatic assays. A range of radical scavenging activities of the samples against biological radicals such as nitric oxide and superoxide anion and against synthetic 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, the ferric reducing antioxidant power and the lipid peroxidation inhibition were determined and ranked using the 'relative antioxidant capacity index' (RACI). The ethyl acetate fraction showed the highest RACI of +1.12. Analysis of the various fractions' inhibitory ability against enzymes involved in diabetes (α-amylase and α-glucosidase), and against enzymes associated with Parkinson's or Alzheimer's diseases (acetylcholinesterase and butyrylcholinesterase) also suggested that the ethyl acetate fraction was the most active. Liquid chromatography-tandem mass spectrometry analysis of the ethyl acetate fraction showed more than 30 polyphenolic compounds, including triterpenes. The inhibitory cholinesterase effects of the triterpenes identified from M. diffusa were further analysed by in silico docking of these compounds into 3D-structures of acetylcholinesterase and butyrylcholinesterase. This is the first study on pharmacological activities and phytochemical profiling of the aerial parts of M. diffusa, showing that this plant, normally used as food in South America, is also rich in health-promoting phytochemicals.

16.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510000

RESUMEN

Members of the mitochondrial carrier (MC) protein family transport various molecules across the mitochondrial inner membrane to interlink steps of metabolic pathways and biochemical processes that take place in different compartments; i.e., are localized partly inside and outside the mitochondrial matrix. MC substrates consist of metabolites, inorganic anions (such as phosphate and sulfate), nucleotides, cofactors and amino acids. These compounds have been identified by in vitro transport assays based on the uptake of radioactively labeled substrates into liposomes reconstituted with recombinant purified MCs. By using this approach, 18 human, plant and yeast MCs for amino acids have been characterized and shown to transport aspartate, glutamate, ornithine, arginine, lysine, histidine, citrulline and glycine with varying substrate specificities, kinetics, influences of the pH gradient, and capacities for the antiport and uniport mode of transport. Aside from providing amino acids for mitochondrial translation, the transport reactions catalyzed by these MCs are crucial in energy, nitrogen, nucleotide and amino acid metabolism. In this review we dissect the transport properties, phylogeny, regulation and expression levels in different tissues of MCs for amino acids, and summarize the main structural aspects known until now about MCs. The effects of their disease-causing mutations and manipulation of their expression levels in cells are also considered as clues for understanding their physiological functions.


Asunto(s)
Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Ácido Glutámico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Humanos , Proteínas de Transporte de Membrana Mitocondrial/clasificación , Proteínas de Transporte de Membrana Mitocondrial/genética , Filogenia , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Biochim Biophys Acta Bioenerg ; 1860(9): 724-733, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31356773

RESUMEN

The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family. In this work, two members of this family, UCP5 (BMCP1, brain mitochondrial carrier protein 1 encoded by SLC25A14) and UCP6 (KMCP1, kidney mitochondrial carrier protein 1 encoded by SLC25A30) have been thoroughly characterized biochemically. They were overexpressed in bacteria, purified and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that UCP5 and UCP6 transport inorganic anions (sulfate, sulfite, thiosulfate and phosphate) and, to a lesser extent, a variety of dicarboxylates (e.g. malonate, malate and citramalate) and, even more so, aspartate and (only UCP5) glutamate and tricarboxylates. Both carriers catalyzed a fast counter-exchange transport and a very low uniport of substrates. Transport was saturable and inhibited by mercurials and other mitochondrial carrier inhibitors at various degrees. The transport affinities of UCP5 and UCP6 were higher for sulfate and thiosulfate than for any other substrate, whereas the specific activity of UCP5 was much higher than that of UCP6. It is proposed that a main physiological role of UCP5 and UCP6 is to catalyze the export of sulfite and thiosulfate (the H2S degradation products) from the mitochondria, thereby modulating the level of the important signal molecule H2S.


Asunto(s)
Aniones/metabolismo , Ácidos Dicarboxílicos/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfatos/metabolismo , Azufre/metabolismo , Transporte Biológico , Humanos , Mitocondrias/metabolismo
18.
J Biol Chem ; 293(11): 4213-4227, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29371401

RESUMEN

The Arabidopsis thaliana genome contains 58 members of the solute carrier family SLC25, also called the mitochondrial carrier family, many of which have been shown to transport specific metabolites, nucleotides, and cofactors across the mitochondrial membrane. Here, two Arabidopsis members of this family, AtUCP1 and AtUCP2, which were previously thought to be uncoupling proteins and hence named UCP1/PUMP1 and UCP2/PUMP2, respectively, are assigned with a novel function. They were expressed in bacteria, purified, and reconstituted in phospholipid vesicles. Their transport properties demonstrate that they transport amino acids (aspartate, glutamate, cysteine sulfinate, and cysteate), dicarboxylates (malate, oxaloacetate, and 2-oxoglutarate), phosphate, sulfate, and thiosulfate. Transport was saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. AtUCP1 and AtUCP2 catalyzed a fast counterexchange transport as well as a low uniport of substrates, with transport rates of AtUCP1 being much higher than those of AtUCP2 in both cases. The aspartate/glutamate heteroexchange mediated by AtUCP1 and AtUCP2 is electroneutral, in contrast to that mediated by the mammalian mitochondrial aspartate glutamate carrier. Furthermore, both carriers were found to be targeted to mitochondria. Metabolite profiling of single and double knockouts shows changes in organic acid and amino acid levels. Notably, AtUCP1 and AtUCP2 are the first reported mitochondrial carriers in Arabidopsis to transport aspartate and glutamate. It is proposed that the primary function of AtUCP1 and AtUCP2 is to catalyze an aspartateout/glutamatein exchange across the mitochondrial membrane and thereby contribute to the export of reducing equivalents from the mitochondria in photorespiration.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Aspártico/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácido Glutámico/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Proteína Desacopladora 1/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Metaboloma , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/genética , Proteína Desacopladora 1/genética
19.
J Inherit Metab Dis ; 41(2): 169-180, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29238895

RESUMEN

Combined D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA) is a devastating neurometabolic disorder, usually lethal in the first years of life. Autosomal recessive mutations in the SLC25A1 gene, which encodes the mitochondrial citrate carrier (CIC), were previously detected in patients affected with combined D/L-2-HGA. We showed that transfection of deficient fibroblasts with wild-type SLC25A1 restored citrate efflux and decreased intracellular 2-hydroxyglutarate levels, confirming that deficient CIC is the cause of D/L-2-HGA. We developed and implemented a functional assay and applied it to all 17 missense variants detected in a total of 26 CIC-deficient patients, including eight novel cases, showing reduced activities of varying degrees. In addition, we analyzed the importance of residues affected by these missense variants using our existing scoring system. This allowed not only a clinical and biochemical overview of the D/L-2-HGA patients but also phenotype-genotype correlation studies.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Encefalopatías Metabólicas Innatas/metabolismo , Ácido Cítrico/metabolismo , Glutaratos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Bioensayo/métodos , Encefalopatías Metabólicas Innatas/genética , Células Cultivadas , Preescolar , Análisis Mutacional de ADN , Femenino , Fibroblastos , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Masculino , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Mutación Missense , Transportadores de Anión Orgánico , Fenotipo , Conformación Proteica , Relación Estructura-Actividad
20.
J Bioenerg Biomembr ; 49(5): 369-380, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28695448

RESUMEN

The ATP-Mg/phosphate carriers (APCs) modulate the intramitochondrial adenine nucleotide pool size. In this study the concentration-dependent effects of Mg2+ and other divalent cations (Me2+) on the transport of [3H]ATP in liposomes reconstituted with purified human and Arabidopsis APCs (hAPCs and AtAPCs, respectively, including some lacking their N-terminal domains) have been investigated. The transport of Me2+ mediated by these proteins was also measured. In the presence of a low external concentration of [3H]ATP (12 µM) and increasing concentrations of Me2+, Mg2+ stimulated the activity (measured as initial transport rate of [3H]ATP) of hAPCs and decreased that of AtAPCs; Fe2+ and Zn2+ stimulated markedly hAPCs and moderately AtAPCs; Ca2+ and Mn2+ markedly AtAPCs and moderately hAPCs; and Cu2+ decreased the activity of both hAPCs and AtAPCs. All the Me2+-dependent effects correlated well with the amount of ATP-Me complex present. The transport of [14C]AMP, which has a much lower ability of complexation than ATP, was not affected by the presence of the Me2+ tested, except Cu2+. Furthermore, the transport of [3H]ATP catalyzed by the ATP/ADP carrier, which is known to transport only free ATP and ADP, was inhibited by all the Me2+ tested in an inverse relationship with the formation of the ATP-Me complex. Finally, direct measurements of Mg2+, Mn2+, Fe2+, Zn2+ and Cu2+ showed that they are cotransported with ATP by both hAPCs and AtAPCs. It is likely that in vivo APCs transport free ATP and ATP-Mg complex to different degrees, and probably trace amounts of other Me2+ in complex with ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antiportadores/metabolismo , Cationes Bivalentes/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Humanos , Cinética , Metales Pesados/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA