Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Adv Mater ; : e2405736, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036822

RESUMEN

Frontal ring-opening metathesis polymerization (FROMP) presents an energy-efficient approach to produce high-performance polymers, typically utilizing norbornene derivatives from Diels-Alder reactions. This study broadens the monomer repertoire for FROMP, incorporating the cycloaddition product of biosourced furan compounds and benzyne, namely 1,4-dihydro-1,4-epoxynaphthalene (HEN) derivatives. A computational screening of Diels-Alder products is conducted, selecting products with resistance to retro-Diels-Alder but also sufficient ring strain to facilitate FROMP. The experiments reveal that varying substituents both modulate the FROMP kinetics and enable the creation of thermoplastic materials characterized by different thermomechanical properties. Moreover, HEN-based crosslinkers are designed to enhance the resulting thermomechanical properties at high temperatures (>200 °C). The versatility of such materials is demonstrated through direct ink writing (DIW) to rapidly produce 3D structures without the need for printed supports. This research significantly extends the range of monomers suitable for FROMP, furthering efficient production of high-performance polymeric materials.

2.
J Am Chem Soc ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836636

RESUMEN

The rate of frontal ring-opening metathesis polymerization (FROMP) using the Grubbs generation II catalyst is impacted by both the concentration and choice of monomers and inhibitors, usually organophosphorus derivatives. Herein we report a data-science-driven workflow to evaluate how these factors impact both the rate of FROMP and how long the formulation of the mixture is stable (pot life). Using this workflow, we built a classification model using a single-node decision tree to determine how a simple phosphine structural descriptor (Vbur-near) can bin long versus short pot life. Additionally, we applied a nonlinear kernel ridge regression model to predict how the inhibitor and selection/concentration of comonomers impact the FROMP rate. The analysis provides selection criteria for material network structures that span from highly cross-linked thermosets to non-cross-linked thermoplastics as well as degradable and nondegradable materials.

3.
Adv Mater ; 36(28): e2402627, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38652482

RESUMEN

While valued for their durability and exceptional performance, crosslinked thermosets are challenging to recycle and reuse. Here, inherent reprocessability in industrially relevant polyolefin thermosets is unveiled. Unlike prior methods, this approach eliminates the need to introduce exchangeable functionality to regenerate the material, relying instead on preserving the activity of the metathesis catalyst employed in the curing reaction. Frontal ring-opening metathesis polymerization (FROMP) proves critical to preserving this activity. Conditions controlling catalytic viability are explored to successfully reclaim performance across multiple generations of material, thus demonstrating long-term reprocessability. This straightforward and scalable remolding strategy is poised for widespread adoption. Given the anticipated growth in polyolefin thermosets, these findings represent an important conceptual advance in the pursuit of a fully circular lifecycle for thermoset polymers.

4.
J Am Chem Soc ; 146(15): 10943-10952, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38581383

RESUMEN

Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s-1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.

5.
Nat Commun ; 15(1): 2852, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605028

RESUMEN

Voids-the nothingness-broadly exist within nanomaterials and impact properties ranging from catalysis to mechanical response. However, understanding nanovoids is challenging due to lack of imaging methods with the needed penetration depth and spatial resolution. Here, we integrate electron tomography, morphometry, graph theory and coarse-grained molecular dynamics simulation to study the formation of interconnected nanovoids in polymer films and their impacts on permeance and nanomechanical behaviour. Using polyamide membranes for molecular separation as a representative system, three-dimensional electron tomography at nanometre resolution reveals nanovoid formation from coalescence of oligomers, supported by coarse-grained molecular dynamics simulations. Void analysis provides otherwise inaccessible inputs for accurate fittings of methanol permeance for polyamide membranes. Three-dimensional structural graphs accounting for the tortuous nanovoids within, measure higher apparent moduli with polyamide membranes of higher graph rigidity. Our study elucidates the significance of nanovoids beyond the nothingness, impacting the synthesis‒morphology‒function relationships of complex nanomaterials.

6.
Nat Commun ; 15(1): 2771, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553489

RESUMEN

A method is developed for facile encapsulation of reactive organic bases with potential application for autonomous damage detection and self-healing polymers. Highly reactive chemicals such as bases and acids are challenging to encapsulate by traditional oil-water emulsion techniques due to unfavorable physical and chemical interactions. In this work, reactivity of the bases is temporarily masked with photo-removable protecting groups, and the resulting inactive payloads are encapsulated via an in situ emulsion-templated interfacial polymerization method. The encapsulated payloads are then activated to restore the organic bases via photo irradiation, either before or after being released from the core-shell carriers. The efficacy of the photo-activated capsules is demonstrated by a damage-triggered, pH-induced color change in polymeric coatings and by recovery of adhesive strength of a damaged interface. Given the wide range of potential photo-deprotection chemistries, this encapsulation scheme provides a simple but powerful method for storage and targeted delivery of a broad variety of reactive chemicals, promoting design of diverse autonomous functionalities in polymeric materials.

7.
J Am Chem Soc ; 146(11): 7216-7221, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38441481

RESUMEN

In this study, we explore the distinct reactivity patterns between frontal ring-opening metathesis polymerization (FROMP) and room-temperature solventless ring-opening metathesis polymerization (ROMP). Despite their shared mechanism, we find that FROMP is less sensitive to inhibitor concentration than room-temperature ROMP. By increasing the initiator-to-monomer ratio for a fixed inhibitor/initiator quantity, we find reduction in the ROMP background reactivity at room temperature (i.e., increased resin pot life). At elevated temperatures where inhibitor dissociation prevails, accelerated frontal polymerization rates are observed because of the concentrated presence of the initiator. Surprisingly, the strategy of employing higher initiator loading enhances both pot life and front speeds, which leads to FROMP rates exceeding prior reported values by over 5 times. This counterintuitive behavior is attributed to an increase in the proximity of the inhibitor to the initiator within the bulk resin and to whether the temperature favors coordination or dissociation of the inhibitor. A rapid method was developed for assessing resin pot life, and a straightforward model for active initiator behavior was established. Modified resin systems enabled direct ink writing of robust thermoset structures at rates much faster than previously possible.

8.
Adv Mater ; 36(11): e2309662, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38087908

RESUMEN

Self-healing offers promise for addressing structural failures, increasing lifespan, and improving durability in polymeric materials. Implementing self-healing in thermoset polymers faces significant manufacturing challenges, especially due to the elevated temperature requirements of thermoset processing. To introduce self-healing into structural thermosets, the self-healing system must be thermally stable and compatible with the thermoset chemistry. This article demonstrates a self-healing microcapsule-based system stable to frontal polymerization (FP), a rapid and energy-efficient manufacturing process with a self-propagating exothermic reaction (≈200 °C). A thermally latent Grubbs-type complex bearing two N-heterocyclic carbene ligands addresses limitations in conventional G2-based self-healing approaches. Under FP's elevated temperatures, the catalyst remains dormant until activated by a Cu(I) co-reagent, ensuring efficient polymerization of the dicyclopentadiene (DCPD) upon damage to the polyDCPD matrix. The two-part microcapsule system consists of one capsule containing the thermally latent Grubbs-type catalyst dissolved in the solvent, and another capsule containing a Cu(I) coagent blended with liquid DCPD monomer. Using the same chemistry for both matrix fabrication and healing results in strong interfaces as demonstrated by lap-shear tests. In an optimized system, the self-healing system restores the mechanical properties of the tough polyDCPD thermoset. Self-healing efficiencies greater than 90% via tapered double cantilever beam tests are observed.

9.
ACS Appl Mater Interfaces ; 15(50): 58309-58319, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38071647

RESUMEN

Organic nonaqueous redox flow batteries (O-NRFBs) are promising energy storage devices due to their scalability and reliance on sourceable materials. However, finding suitable redox-active organic molecules (redoxmers) for these batteries remains a challenge. Using plant-based compounds as precursors for these redoxmers can decrease their costs and environmental toxicity. In this computational study, flavonoid molecules have been examined as potential redoxmers for O-NRFBs. Flavone and isoflavone derivatives were selected as catholyte (positive charge carrier) and anolyte (negative charge carrier) molecules, respectively. To drive their redox potentials to the opposite extremes, in silico derivatization was performed using a novel algorithm to generate a library of > 40000 candidate molecules that penalizes overly complex structures. A multiobjective Bayesian optimization based active learning algorithm was then used to identify best redoxmer candidates in these search spaces. Our study provides methodologies for molecular design and optimization of natural scaffolds and highlights the need of incorporating expert chemistry awareness of the natural products and the basic rules of synthetic chemistry in machine learning.

10.
ACS Cent Sci ; 9(9): 1810-1819, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37780353

RESUMEN

Thermosets present sustainability challenges that could potentially be addressed through the design of deconstructable variants with tunable properties; however, the combinatorial space of possible thermoset molecular building blocks (e.g., monomers, cross-linkers, and additives) and manufacturing conditions is vast, and predictive knowledge for how combinations of these molecular components translate to bulk thermoset properties is lacking. Data science could overcome these problems, but computational methods are difficult to apply to multicomponent, amorphous, statistical copolymer materials for which little data exist. Here, leveraging a data set with 101 examples, we introduce a closed-loop experimental, machine learning (ML), and virtual screening strategy to enable predictions of the glass transition temperature (Tg) of polydicyclopentadiene (pDCPD) thermosets containing cleavable bifunctional silyl ether (BSE) comonomers and/or cross-linkers with varied compositions and loadings. Molecular features and formulation variables are used as model inputs, and uncertainty is quantified through model ensembling, which together with heavy regularization helps to avoid overfitting and ultimately achieves predictions within <15 °C for thermosets with compositionally diverse BSEs. This work offers a path to predicting the properties of thermosets based on their molecular building blocks, which may accelerate the discovery of promising plastics, rubbers, and composites with improved functionality and controlled deconstructability.

11.
Nat Commun ; 14(1): 4847, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563151

RESUMEN

Post-consumer plastic waste in the environment has driven the scientific community to develop deconstruction methods that yield valued substances from these synthetic macromolecules. Electrocatalysis is a well-established method for achieving challenging transformations in small molecule synthesis. Here we present the first electro-chemical depolymerization of polyoxymethylene-a highly crystalline engineering thermoplastic (Delrin®)-into its repolymerizable monomer, formaldehyde/1,3,5-trioxane, under ambient conditions. We investigate this electrochemical deconstruction by employing solvent screening, cyclic voltammetry, divided cell studies, electrolysis with redox mediators, small molecule model studies, and control experiments. Our findings determine that the reaction proceeds via a heterogeneous electro-mediated acid depolymerization mechanism. The bifunctional role of the co-solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is also revealed. This study demonstrates the potential of electromediated depolymerization serving as an important role in sustainable chemistry by merging the concepts of renewable energy and circular plastic economy.

12.
J Am Chem Soc ; 145(19): 10470-10474, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37146270

RESUMEN

The formation of carbon-carbon bonds by pinacol coupling of aldehydes and ketones requires a large negative reduction potential, often realized with a stoichiometric reducing reagent. Here, we use solvated electrons generated via a plasma-liquid process. Parametric studies with methyl-4-formylbenzoate reveal that selectivity over the competing reduction to the alcohol requires careful control over mass transport. The generality is demonstrated with benzaldehydes, benzyl ketones, and furfural. A reaction-diffusion model explains the observed kinetics, and ab initio calculations provide insight into the mechanism. This study opens the possibility of a metal-free, electrically-powered, sustainable method for reductive organic reactions.

13.
ChemSusChem ; 16(14): e202300043, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943787

RESUMEN

Redoxmers are organic active molecules storing electrochemical energy in nonaqueous redox flow batteries (NRFBs). Increasing the solubility of redoxmers is an important approach for increasing energy density of NRFBs as effective redoxmer concentration determines how much electricity can be stored in a given volume. Molecular engineering redoxmers towards liquid forms is regarded as one promising strategy as liquid redoxmers represent an extreme scenario where fluidity is maintained at maximum concentration using a minimum amount of supporting solvents. In this Perspective, recent examples of liquid redoxmers as well as their development strategy will be discussed.

14.
Chem Rev ; 123(6): 3237-3298, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36827528

RESUMEN

The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.

15.
J Am Chem Soc ; 145(3): 1916-1923, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36637230

RESUMEN

Convenient strategies for the deconstruction and reprocessing of thermosets could improve the circularity of these materials, but most approaches developed to date do not involve established, high-performance engineering materials. Here, we show that bifunctional silyl ether, i.e., R'O-SiR2-OR'', (BSE)-based comonomers generate covalent adaptable network analogues of the industrial thermoset polydicyclopentadiene (pDCPD) through a novel BSE exchange process facilitated by the low-cost food-safe catalyst octanoic acid. Experimental studies and density functional theory calculations suggest an exchange mechanism involving silyl ester intermediates with formation rates that strongly depend on the Si-R2 substituents. As a result, pDCPD thermosets manufactured with BSE comonomers display temperature- and time-dependent stress relaxation as a function of their substituents. Moreover, bulk remolding of pDCPD thermosets is enabled for the first time. Altogether, this work presents a new approach toward the installation of exchangeable bonds into commercial thermosets and establishes acid-catalyzed BSE exchange as a versatile addition to the toolbox of dynamic covalent chemistry.

16.
Chem Sci ; 13(41): 12045-12055, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36349107

RESUMEN

As a machine-recognizable representation of polymer connectivity, BigSMILES line notation extends SMILES from deterministic to stochastic structures. The same framework that allows BigSMILES to accommodate stochastic covalent connectivity can be extended to non-covalent bonds, enhancing its value for polymers, supramolecular materials, and colloidal chemistry. Non-covalent bonds are captured through the inclusion of annotations to pseudo atoms serving as complementary binding pairs, minimal key/value pairs to elaborate other relevant attributes, and indexes to specify the pairing among potential donors and acceptors or bond delocalization. Incorporating these annotations into BigSMILES line notation enables the representation of four common classes of non-covalent bonds in polymer science: electrostatic interactions, hydrogen bonding, metal-ligand complexation, and π-π stacking. The principal advantage of non-covalent BigSMILES is the ability to accommodate a broad variety of non-covalent chemistry with a simple user-orientated, semi-flexible annotation formalism. This goal is achieved by encoding a universal but non-exhaustive representation of non-covalent or stochastic bonding patterns through syntax for (de)protonated and delocalized state of bonding as well as nested bonds for correlated bonding and multi-component mixture. By allowing user-defined descriptors in the annotation expression, further applications in data-driven research can be envisioned to represent chemical structures in many other fields, including polymer nanocomposite and surface chemistry.

17.
ACS Macro Lett ; 11(12): 1366-1372, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36413761

RESUMEN

Recent advances in chemical synthesis have created new methodologies for synthesizing sequence-controlled synthetic polymers, but rational design of monomer sequence for desired properties remains challenging. In this work, we synthesize periodic polymers with repetitive segments using a sequence-controlled ring-opening metathesis polymerization (ROMP) method, which draws inspiration from proteins containing repetitive sequence motifs. The repetitive segment architecture is shown to dramatically affect the self-assembly behavior of these materials. Our results show that polymers with identical repetitive sequences assemble into uniform spherical nanoparticles after thermal annealing, whereas copolymers with random placement of segments with different sequences exhibit disordered assemblies without a well-defined morphology. Overall, these results bring a new understanding to the role of periodic repetitive sequences in polymer assembly.


Asunto(s)
Polímeros , Polímeros/química , Polimerizacion
18.
Nat Commun ; 13(1): 6322, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280685

RESUMEN

The ribosome is a macromolecular machine that catalyzes the sequence-defined polymerization of L-α-amino acids into polypeptides. The catalysis of peptide bond formation between amino acid substrates is based on entropy trapping, wherein the adjacency of transfer RNA (tRNA)-coupled acyl bonds in the P-site and the α-amino groups in the A-site aligns the substrates for coupling. The plasticity of this catalytic mechanism has been observed in both remnants of the evolution of the genetic code and modern efforts to reprogram the genetic code (e.g., ribosomal incorporation of non-canonical amino acids, ribosomal ester formation). However, the limits of ribosome-mediated polymerization are underexplored. Here, rather than peptide bonds, we demonstrate ribosome-mediated polymerization of pyridazinone bonds via a cyclocondensation reaction between activated γ-keto and α-hydrazino ester monomers. In addition, we demonstrate the ribosome-catalyzed synthesis of peptide-hybrid oligomers composed of multiple sequence-defined alternating pyridazinone linkages. Our results highlight the plasticity of the ribosome's ancient bond-formation mechanism, expand the range of non-canonical polymeric backbones that can be synthesized by the ribosome, and open the door to new applications in synthetic biology.


Asunto(s)
ARN de Transferencia , Ribosomas , Ribosomas/metabolismo , ARN de Transferencia/metabolismo , Código Genético , Péptidos/química , Aminoácidos/metabolismo , Biosíntesis de Proteínas
19.
ACS Macro Lett ; 11(9): 1097-1101, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35998375

RESUMEN

Two frontal polymerization (FP) mechanisms, frontal ring-opening metathesis polymerization (FROMP) of dicyclopentadiene and frontal radical polymerization (FRaP) of benzyl acrylate and hexanediol diacrylate, were combined for rapid manufacturing of welded thermoset materials. Leveraging the immiscibility of the two different FP resins, welded thermosets and gradient foams of varying composition were achieved by switching of FP mechanisms. The adhesion strength of the welded thermoset materials differed depending on the originating mechanism. Finally, welded thermoset foams of varying porosity and homogeneity were generated through initiation from the bottom of the two resins.


Asunto(s)
Acrilatos , Polimerizacion , Porosidad
20.
J Org Chem ; 87(13): 8429-8436, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35678630

RESUMEN

Three-rung molecular ladder 8 was prepared in one pot via tandem imine condensation and alkyne metathesis. Catalyst VI is demonstrated to successfully engender the metathesis of imine-bearing substrate 7, while catalyst III does not. The susceptibility of catalyst VI to deactivation by hydrolysis and ligand exchange is demonstrated. Assembly and disassembly of ladder 8 in one pot were demonstrated in the presence and absence of a Lewis acid catalyst.


Asunto(s)
Alquinos , Iminas , Alquinos/química , Catálisis , Iminas/química , Ácidos de Lewis/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA