Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Br J Ophthalmol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103200

RESUMEN

AIMS: To investigate the long-term natural history of ellipsoid zone (EZ) width in USH2A-retinopathy. METHODS: EZ width measurements from optical coherence tomography were retrospectively obtained from 110 eyes of 55 participants with molecularly confirmed biallelic USH2A-retinopathy. We used a hierarchical Bayesian method to construct and compare different mathematical models describing the long-term decline of EZ width. RESULTS: Compared with linear and quadratic models, exponential decline best represented the long-term loss of EZ width based on the deviance information criterion score. Log-transformed EZ width declined linearly over 30 years of inferred disease duration (median: 0.063 (IQR: 0.040-0.086) log (µm)/year). Compared with the raw EZ width decline rate, the log-transformed EZ width decline rate required 48% fewer patients to achieve an identically powered 1-year trial (38 vs 73 participants). Log EZ width decline rate was uncoupled from baseline EZ width (Spearman ρ=-0.18, p=0.06) and age (ρ=-0.10, p=0.31). Eyes with Usher syndrome exhibited earlier median onset ages of macular EZ width loss (18.8 (IQR: 13.1-24.7) vs 28.1 (IQR: 18.5-35.8) years, p<0.001) but comparable log EZ width decline rates (0.060 (IQR: 0.035-0.100) vs 0.065 (IQR: 0.050-0.079) log (µm)/year; p=0.42). CONCLUSIONS: EZ width follows an exponential decline in USH2A-retinopathy. Compared with raw EZ width decline rate, log-transformed EZ width decline rate may be a superior endpoint for clinical trials. Syndromic eyes exhibit an earlier onset of macular EZ width loss but progress at comparable rates to non-syndromic eyes.

2.
Genes (Basel) ; 15(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927634

RESUMEN

Myogenic transcription factors with a basic helix-loop-helix (bHLH) such as MYOD, myogenin, MRF4, and MYF5 contribute to muscle differentiation and regulation. The MYF5 gene located on chromosome 12 encodes for myogenic factor 5 (MYF5), which has a role in skeletal and extraocular muscle development and rib formation. Variants in MYF5 were found to cause external ophthalmoplegia with rib and vertebral anomalies (EORVA), a rare recessive condition. To date, three homozygous variants in MYF5 have been reported to cause EORVA in six members of four unrelated families. Here, we present a novel homozygous MYF5 frameshift variant, c.596dupA p. (Asn199Lysfs*49), causing premature protein termination and presenting with external ophthalmoplegia, ptosis, and scoliosis in three siblings from a consanguineous family of Pakistani origin. With four MYF5 variants now discovered, genetic testing and paediatric assessment for extra-ocular features should be considered in all cases of congenital ophthalmoplegia.


Asunto(s)
Mutación del Sistema de Lectura , Factor 5 Regulador Miogénico , Oftalmoplejía , Costillas , Niño , Femenino , Humanos , Masculino , Mutación del Sistema de Lectura/genética , Homocigoto , Factor 5 Regulador Miogénico/genética , Oftalmoplejía/genética , Oftalmoplejía/congénito , Linaje , Costillas/anomalías , Columna Vertebral/anomalías , Columna Vertebral/patología
3.
Genes (Basel) ; 15(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38927596

RESUMEN

Mutations in the CRB1 gene are associated with a diverse spectrum of retinopathies with phenotypic variability causing severe visual impairment. The CRB1 gene has a role in retinal development and is expressed in the cerebral cortex and hippocampus, but its role in cognition has not been described before. This study compares cognitive function in CRB1 retinopathy individuals with subjects with other retinopathies and the normal population. METHODS: Neuropsychological tests of cognitive function were used to test individuals with CRB1 and non-CRB1 retinopathies and compare results with a standardised normative dataset. RESULTS: CRB1 retinopathy subjects significantly outperformed those with non-CRB1 retinopathy in list learning tasks of immediate (p = 0.001) and delayed memory (p = 0.007), tests of semantic verbal fluency (p = 0.017), verbal IQ digit span subtest (p = 0.037), and estimation test of higher execution function (p = 0.020) but not in the remaining tests of cognitive function (p > 0.05). CRB1 retinopathy subjects scored significantly higher than the normal population in all areas of memory testing (p < 0.05) and overall verbal IQ tests (p = 0.0012). Non-CRB1 retinopathy subjects scored significantly higher than the normal population in story recall, verbal fluency, and overall verbal IQ tests (p = 0.0016). CONCLUSIONS: Subjects with CRB1 retinopathy may have enhanced cognitive function in areas of memory and learning. Further work is required to understand the role of CRB1 in cognition.


Asunto(s)
Proteínas del Ojo , Proteínas de la Membrana , Memoria , Proteínas del Tejido Nervioso , Humanos , Proteínas del Tejido Nervioso/genética , Masculino , Femenino , Proteínas de la Membrana/genética , Adulto , Persona de Mediana Edad , Proteínas del Ojo/genética , Memoria/fisiología , Enfermedades de la Retina/genética , Pruebas Neuropsicológicas , Cognición , Aprendizaje/fisiología , Adulto Joven , Adolescente , Anciano
4.
Stem Cell Reports ; 19(6): 839-858, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38821055

RESUMEN

Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.


Asunto(s)
Apoptosis , Células Madre Pluripotentes Inducidas , Microftalmía , Microftalmía/genética , Microftalmía/patología , Microftalmía/metabolismo , Humanos , Apoptosis/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proliferación Celular , Caspasa 8/metabolismo , Caspasa 8/genética , Matriz Extracelular/metabolismo , Ojo/metabolismo , Ojo/patología , Fenotipo
5.
BMC Genomics ; 25(1): 484, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755526

RESUMEN

Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.


Asunto(s)
Glaucoma , Humanos , Glaucoma/genética , Glaucoma/diagnóstico , Masculino , Femenino , Niño , Preescolar , Citocromo P-450 CYP1B1/genética , Mutación , Lactante , Genómica/métodos , Linaje , Adolescente , Factores de Transcripción Forkhead
6.
Curr Eye Res ; 49(8): 879-887, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38666493

RESUMEN

PURPOSE: To assess the safety and feasibility of direct vitrectomy-sparing subretinal injection for gene delivery in a large animal model. METHODS: The experimental Libechov minipigs were used for subretinal delivery of a plasmid DNA vector (pS/MAR-CMV-copGFP) with cytomegalovirus (CMV) promoter, green fluorescent protein (GFP) reporter (copGFP) and a scaffold/matrix attachment region (S/MAR) sequence. The eyes were randomized to subretinal injection of the vector following pars plana vitrectomy (control group) or a direct injection without prior vitrectomy surgery (experimental group). Intra- and post-operative observations up to 30 days after surgery were compared. RESULTS: Six eyes of three mini-pigs underwent surgery for delivery into the subretinal space. Two eyes in the control group were operated with a classical approach (lens-sparing vitrectomy and posterior hyaloid detachment). The other four eyes in the experimental group were injected directly with a subretinal cannula without vitrectomy surgery. No adverse events, such as endophthalmitis, retinal detachment and intraocular pressure elevation were observed post-operatively. The eyes in the experimental group had both shorter surgical time and recovery while achieving the same surgical goal. CONCLUSIONS: This pilot study demonstrates that successful subretinal delivery of gene therapy vectors is achievable using a direct injection without prior vitrectomy surgery.


Asunto(s)
Estudios de Factibilidad , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos , Porcinos Enanos , Vitrectomía , Animales , Vitrectomía/métodos , Porcinos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Proyectos Piloto , Retina , Inyecciones Intraoculares , Plásmidos/administración & dosificación , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética
7.
Ther Adv Ophthalmol ; 16: 25158414241232285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550759

RESUMEN

Background: Charles Bonnet syndrome (CBS) is characterized by visual hallucinations occurring in people with visual impairment. CBS can negatively impact psychological well-being, and the COVID-19 pandemic period was associated with an exacerbation of symptoms. Objectives: To compare clinical practice patterns and reporting of CBS at a tertiary eye care center between an interval prior to the COVID-19 pandemic and an interval during the pandemic. Design: Retrospective chart review. Methods: A search of electronic medical records for all suspected CBS cases was conducted between 1 March 2019 and 29 February 2020 (prior pandemic interval) and between 1 September 2020 and 29 August 2021 (peri-pandemic interval). Data retrieved from records included patient demographics, visual acuity at the time of CBS onset, type of hallucinations, reporting healthcare professional, management strategies and patient-reported impact of hallucinations. Results: In total, 223 appointments referred to CBS in 156 patients at the prior interval, while 239 appointments referred to CBS in 155 patients at the peri-pandemic interval, representing 0.07% and 0.09% of all hospital attendance, respectively. Clinical subspecialty where CBS was most commonly reported was medical retina, and a greater proportion of patients at both time intervals were female. Types of hallucinations, management strategies and patient-reported impact were seldom reported, although documentation improved at the latter interval. Conclusion: Practice patterns and patient characteristics were similar between the two intervals; however, subtle differences suggest a growing awareness of CBS. Targeted interventions in high-burden clinical subspecialties may encourage reporting and improve documentation of CBS.

8.
Genes (Basel) ; 15(2)2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38397177

RESUMEN

Inherited optic neuropathies affect around 1 in 10,000 people in England; in these conditions, vision is lost as retinal ganglion cells lose function or die (usually due to pathological variants in genes concerned with mitochondrial function). Emerging gene therapies for these conditions have emphasised the importance of early and expedient molecular diagnoses, particularly in the paediatric population. Here, we report our real-world clinical experience of such a population, exploring which children presented with the condition, how they were investigated and the time taken for a molecular diagnosis to be reached. A retrospective case-note review of paediatric inherited optic neuropathy patients (0-16 years) in the tertiary neuro-ophthalmology service at Moorfields Eye Hospital between 2016 and 2020 identified 19 patients. Their mean age was 9.3 ± 4.6 (mean ± SD) years at presentation; 68% were male, and 32% were female; and 26% had comorbidities, with diversity of ethnicity. Most patients had undergone genetic testing (95% (n = 18)), of whom 43% (n = 8) received a molecular diagnosis. On average, this took 54.8 ± 19.5 weeks from presentation. A cerebral MRI was performed in 70% (n = 14) and blood testing in 75% (n = 15) of patients as part of their workup. Continual improvement in the investigative pathways for inherited optic neuropathies will be paramount as novel therapeutics become available.


Asunto(s)
Oftalmología , Atrofia Óptica Autosómica Dominante , Atrofia Óptica Hereditaria de Leber , Enfermedades del Nervio Óptico , Humanos , Masculino , Femenino , Niño , Preescolar , Adolescente , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Autosómica Dominante/genética , Estudios Retrospectivos , Enfermedades del Nervio Óptico/diagnóstico , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/terapia
9.
Ophthalmol Retina ; 8(7): 699-709, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38219857

RESUMEN

PURPOSE: Inherited retinal disease (IRD) is a leading cause of blindness. Recent advances in gene-directed therapies highlight the importance of understanding the genetic basis of these disorders. This study details the molecular spectrum in a large United Kingdom (UK) IRD patient cohort. DESIGN: Retrospective study of electronic patient records. PARTICIPANTS: Patients with IRD who attended the Genetics Service at Moorfields Eye Hospital between 2003 and July 2020, in whom a molecular diagnosis was identified. METHODS: Genetic testing was undertaken via a combination of single-gene testing, gene panel testing, whole exome sequencing, and more recently, whole genome sequencing. Likely disease-causing variants were identified from entries within the genetics module of the hospital electronic patient record (OpenEyes Electronic Medical Record). Analysis was restricted to only genes listed in the Genomics England PanelApp R32 Retinal Disorders panel (version 3.24), which includes 412 genes associated with IRD. Manual curation ensured consistent variant annotation and included only plausible disease-associated variants. MAIN OUTCOME MEASURES: Detailed analysis was performed for variants in the 5 most frequent genes (ABCA4, USH2A, RPGR, PRPH2, and BEST1), as well as for the most common variants encountered in the IRD study cohort. RESULTS: We identified 4415 individuals from 3953 families with molecularly diagnosed IRD (variants in 166 genes). Of the families, 42.7% had variants in 1 of the 5 most common IRD genes. Complex disease alleles contributed to disease in 16.9% of affected families with ABCA4-associated retinopathy. USH2A exon 13 variants were identified in 43% of affected individuals with USH2A-associated IRD. Of the RPGR variants, 71% were clustered in the ORF15 region. PRPH2 and BEST1 variants were associated with a range of dominant and recessive IRD phenotypes. Of the 20 most prevalent variants identified, 5 were not in the most common genes; these included founder variants in CNGB3, BBS1, TIMP3, EFEMP1, and RP1. CONCLUSIONS: We describe the most common pathogenic IRD alleles in a large single-center multiethnic UK cohort and the burden of disease, in terms of families affected, attributable to these variants. Our findings will inform IRD diagnoses in future patients and help delineate the cohort of patients eligible for gene-directed therapies under development. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Asunto(s)
Pruebas Genéticas , Enfermedades de la Retina , Humanos , Reino Unido/epidemiología , Estudios Retrospectivos , Masculino , Femenino , Enfermedades de la Retina/genética , Enfermedades de la Retina/diagnóstico , Pruebas Genéticas/métodos , Mutación , Variación Genética , Adulto , Secuenciación del Exoma/métodos , Persona de Mediana Edad , Linaje , ADN/genética , Predisposición Genética a la Enfermedad
10.
Digit Health ; 10: 20552076231220804, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188864

RESUMEN

Objectives: To explore the acceptability of an eHealth App for vision-related monitoring and symptom reporting among young people with a visual impairment and their parents. Methods: Qualitative investigation using virtual semi-structured focus groups (via Zoom software) of seven young participants with a genetic eye disorder including inherited retinal disease and structural eye abnormalities (e.g. microphthalmia), and 7 parents; all recruited from ocular genetic clinics at Moorfields Eye Hospital. Audio transcripts were analysed using thematic analysis. Results: Data were coded into six key themes: (1) increased involvement in care, (2) opportunity for less hospital-centric care, (3) better representation of visual impairment in a real-world setting, (4) trust in a reputable service provider, (5) harnessing data for health purposes and (6) intended purpose of the app. Both young people and their families were accepting of an eHealth app and felt they would be empowered by greater involvement in their care plan, if privacy of the data was retained, and information was managed correctly. While parents endorsed the opportunity for mental health tracking, young people were hesitant towards its inclusion. Conclusion: In summary, there was overall acceptability of an eHealth app among young people with a visual impairment and their parents. These findings will help to maximise the effective integration of digital phenotyping when monitoring and supporting young people experiencing sight loss.

11.
Eye (Lond) ; 38(5): 853-862, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37898718

RESUMEN

OBJECTIVES: Bietti Crystalline Dystrophy (BCD) is an autosomal recessive progressive retinal disease caused by mutations in CYP4V2. We have characterised the natural history including structural and functional measures to identify potential outcome metrics for future clinical trials. METHODS: Molecularly-confirmed BCD patients with biallelic variants in CYP4V2 were retrospectively identified from Moorfields Eye Hospital (UK). Clinical details including results of molecular genetic testing, best-corrected visual acuity (BCVA) and spectral-domain optical coherence tomography (OCT) scans were extracted. From OCT scans, ellipsoid zone (EZ) measures, foveal thickness of the whole retina, outer retina and choroid were measured. Age-related changes of clinical parameters were assessed with linear mixed models. RESULTS: Twenty-eight BCD patients were identified, with median age at baseline of 37 years (interquartile range [IQR]: 30-49.5). Median follow-up was 7.7 years (IQR: 3.4-14.5). Most patients (41.7%) showed chorioretinal atrophy at baseline. All OCT parameters showed significant age-related loss (p < 0.05), with EZ measures and choroidal thickness displaying the most rapid degeneration (2.3-3.3% per year vs 0.6-1.5% per year). Median BCVA was 0.2 LogMAR (IQR: 0-0.5) at baseline and showed small age-related loss ( + 0.016 LogMAR per year, p = 0.0019). Patients exhibited substantial phenotypic variability. CONCLUSIONS: BCD presents between age 25 and 40, and slowly progresses to an advanced chorioretinal atrophy and vision loss by age 60. BCVA may be preserved until late, and is seemingly poorly representative of disease progression. OCT parameters capturing EZ and choroid changes may afford more suitable trial outcome measures.


Asunto(s)
Enfermedades de la Coroides , Distrofias Hereditarias de la Córnea , Enfermedades de la Retina , Humanos , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Familia 4 del Citocromo P450/genética , Atrofia , Tomografía de Coherencia Óptica
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166963, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37989423

RESUMEN

Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, however, the involvement of the choroid in disease progression is not fully understood. CHM is caused by mutations in the CHM gene, encoding the ubiquitously expressed Rab escort protein 1 (REP1). REP1 plays an important role in intracellular trafficking of vesicles, including melanosomes. In this study, we examined the ultrastructure of the choroid in chmru848 fish and Chmnull/WT mouse models using transmission electron and confocal microscopy. Significant pigmentary disruptions were observed, with lack of melanosomes in the choroid of chmru848 fish from 4 days post fertilisation (4dpf), and a reduction in choroidal blood vessel diameter and interstitial pillars suggesting a defect in vasculogenesis. Total melanin and expression of melanogenesis genes tyr, tryp1a, mitf, dct and pmel were also reduced from 4dpf. In Chmnull/WT mice, choroidal melanosomes were significantly smaller at 1 month, with reduced eumelanin at 1 year. The choroid in CHM patients were also examined using spectral domain optical coherence tomography (SD-OCT) and OCT-angiography (OCT-A) and the area of preserved choriocapillaris (CC) was found to be smaller than that of overlying photoreceptors, suggesting that the choroid is degenerating at a faster rate. Histopathology of an enucleated eye from a 74-year-old CHM male patient revealed isolated areas of RPE but no associated underlying CC. Pigmentary disruptions in CHM animal models reveal an important role for REP1 in melanogenesis, and drugs that improve melanin production represent a potential novel therapeutic avenue.


Asunto(s)
Coroideremia , Anciano , Animales , Humanos , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Coroides/metabolismo , Coroideremia/genética , Coroideremia/patología , Coroideremia/terapia , Melaninas , Melanogénesis , Ratones Noqueados
13.
Transl Vis Sci Technol ; 12(12): 14, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085246

RESUMEN

Purpose: The purpose of this study was to present our findings on the natural history of late-onset retinal degeneration (LORD) in patients with molecularly confirmed C1QTNF5 heterozygous pathogenic variants and assess suitability of retinal structure parameters for disease monitoring. Methods: Sixteen patients with C1QTNF5-LORD were retrospectively identified from Moorfields Eye Hospital, UK. Fundus autofluorescence (FAF), optical coherence tomography (OCT) scans, and best-corrected visual acuity (BCVA) were collected. Area of atrophy (AA) was manually drawn in FAF images. Ellipsoid zone (EZ) width and foveal retinal thickness of the whole retina and outer retina were extracted from OCT scans. Age-related changes were tested with linear-mixed models. Results: Patients had median age of 62.3 years (interquartile range [IQR] = 58.8-65.4 years) at baseline, and median follow-up of 5.1 years (IQR = 2.6-7.6 years). AA, EZ width, and retinal thickness parameters remained unchanged until age 50 years, but showed significant change with age thereafter (all P < 0.0001). AA and EZ width progressed rapidly (dynamic range normalized rates = 4.3-4.5%/year) from age 53.9 and 50.8 years (estimated inflection points), respectively. Retinal thickness parameters showed slower progression rates (range = 1.6-2.5%/year) from age 60 to 62.3. BCVA (median = 0.3 LogMAR, IQR = 0.0-1.0 at baseline) showed a rapid decline (3.3%) from age 70 years. Findings from patients with earlier disease showed FAF atrophy manifests in the temporal retina initially, and then progresses nasally. Conclusions: Patients with LORD remained asymptomatic until age 50 years, before suffering rapid outer retinal degeneration. EZ width and AA showed rapid progression and high interocular correlation, representing promising outcome metrics. Clinical measures also capturing the temporal retina may be preferable, enabling earlier detection and better disease monitoring. Translational Relevance: Area of atrophy in FAF images and OCT-measured EZ width represent promising outcome metrics for disease monitoring in patients with C1QTNF5-LORD.


Asunto(s)
Degeneración Retiniana , Humanos , Persona de Mediana Edad , Anciano , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Estudios Retrospectivos , Agudeza Visual , Angiografía con Fluoresceína/métodos , Retina/diagnóstico por imagen , Atrofia/patología , Tomografía de Coherencia Óptica/métodos , Colágeno
15.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894906

RESUMEN

Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.


Asunto(s)
Coroideremia , Distrofias Retinianas , Animales , Humanos , Adulto , Coroideremia/genética , Coroideremia/terapia , Coroideremia/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Retina/metabolismo , Mutación , Distrofias Retinianas/metabolismo , Plásmidos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
16.
PLoS Biol ; 21(10): e3002336, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856539

RESUMEN

The transparent corneal epithelium in the eye is maintained through the homeostasis regulated by limbal stem cells (LSCs), while the nontransparent epidermis relies on epidermal keratinocytes for renewal. Despite their cellular similarities, the precise cell fates of these two types of epithelial stem cells, which give rise to functionally distinct epithelia, remain unknown. We performed a multi-omics analysis of human LSCs from the cornea and keratinocytes from the epidermis and characterized their molecular signatures, highlighting their similarities and differences. Through gene regulatory network analyses, we identified shared and cell type-specific transcription factors (TFs) that define specific cell fates and established their regulatory hierarchy. Single-cell RNA-seq (scRNA-seq) analyses of the cornea and the epidermis confirmed these shared and cell type-specific TFs. Notably, the shared and LSC-specific TFs can cooperatively target genes associated with corneal opacity. Importantly, we discovered that FOSL2, a direct PAX6 target gene, is a novel candidate associated with corneal opacity, and it regulates genes implicated in corneal diseases. By characterizing molecular signatures, our study unveils the regulatory circuitry governing the LSC fate and its association with corneal opacity.


Asunto(s)
Opacidad de la Córnea , Epitelio Corneal , Limbo de la Córnea , Humanos , Limbo de la Córnea/metabolismo , Córnea/metabolismo , Epitelio Corneal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Opacidad de la Córnea/metabolismo
17.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762234

RESUMEN

The CRB1 gene plays a role in retinal development and its maintenance. When disrupted, it gives a range of phenotypes such as early-onset severe retinal dystrophy/Leber congenital amaurosis (EOSRD/LCA), retinitis pigmentosa (RP), cone-rod dystrophy (CORD) and macular dystrophy (MD). Studies in CRB1 retinopathies have shown thickening and coarse lamination of retinal layers resembling an immature retina. Its role in foveal development has not yet been described; however, this retrospective study is the first to report foveal hypoplasia (FH) presence in a CRB1-related retinopathy cohort. Patients with pathogenic biallelic CRB1 variants from Moorfields Eye Hospital, London, UK, were collected. Demographic, clinical data and SD-OCT analyses with FH structural grading were performed. A total of 15 (48%) patients had EOSRD/LCA, 11 (35%) MD, 3 (9%) CORD and 2 (6%) RP. FH was observed in 20 (65%; CI: 0.47-0.79) patients, all of whom were grade 1. A significant difference in BCVA between patients with FH and without was found (p = 0.014). BCVA continued to worsen over time in both groups (p < 0.001), irrespective of FH. This study reports FH in a CRB1 cohort, supporting the role of CRB1 in foveal development. FH was associated with poorer BCVA and abnormal retinal morphology. Nonetheless, its presence did not alter the disease progression.


Asunto(s)
Distrofias de Conos y Bastones , Anomalías del Ojo , Amaurosis Congénita de Leber , Degeneración Macular , Distrofias Retinianas , Retinitis Pigmentosa , Humanos , Estudios Retrospectivos , Retina , Distrofias Retinianas/genética , Retinitis Pigmentosa/genética , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
18.
Antioxidants (Basel) ; 12(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37759997

RESUMEN

Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy, affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, with no approved therapy. CHM is caused by mutations in the CHM gene, which encodes the ubiquitously expressed Rab escort protein 1 (REP1). REP1 is involved in prenylation, a post-translational modification of Rab proteins, and plays an essential role in intracellular trafficking. In this study, we examined oxidative and endoplasmic reticulum (ER) stress pathways in chmru848 zebrafish and CHMY42X patient fibroblasts, and screened a number of neuroprotectants for their ability to reduce stress. The expression of the oxidative stress markers txn, cat and sod3a, and the ER stress markers bip, atf4 and atf6, were dysregulated in chmru848 fish. The expression of SOD2 was also reduced in CHMY42X fibroblasts, along with reduced BIP and increased CHOP expression. The lack of REP1 is associated with defects in vesicular trafficking, photoreceptor outer segment phagocytosis and melanosome transport, leading to increased levels of stress within the retina and RPE. Drugs targeting oxidative and ER stress pathways represent novel therapeutic avenues.

19.
Annu Rev Genomics Hum Genet ; 24: 177-202, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624667

RESUMEN

The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.


Asunto(s)
Microftalmía , Miopía , Adulto , Femenino , Embarazo , Humanos , Microftalmía/genética , Miopía/genética , Interacción Gen-Ambiente , Progenie de Nacimiento Múltiple , Primer Trimestre del Embarazo
20.
Mol Ther Nucleic Acids ; 33: 240-253, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37483273

RESUMEN

Congenital aniridia is a rare, pan-ocular disease causing severe sight loss, with only symptomatic intervention offered to patients. Approximately 40% of aniridia patients present with heterozygous nonsense variants in PAX6, resulting in haploinsufficiency. Translational readthrough-inducing drugs (TRIDs) have the ability to weaken the recognition of in-frame premature termination codons (PTCs), permitting full-length protein to be translated. We established induced pluripotent stem cell (iPSC)-derived 3D optic cups and 2D limbal epithelial stem cell (LESC) models from two aniridia patients with prevalent PAX6 nonsense mutations. Both in vitro models show reduced PAX6 protein levels, mimicking the disease. The repurposed TRIDs amlexanox and 2,6-diaminopurine (DAP) and the positive control compounds ataluren and G418 were tested for their efficiency. Amlexanox was identified as the most promising TRID, increasing full-length PAX6 levels in both models and rescuing the disease phenotype through normalization of VSX2 and cell proliferation in the optic cups and reduction of ABCG2 protein and SOX10 expression in LESCs. This study highlights the significance of patient iPSC-derived cells as a new model system for aniridia and proposes amlexanox as a new putative treatment for nonsense-mediated aniridia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA