Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cells ; 12(16)2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37626916

RESUMEN

One of the hallmarks of microgravity-induced effects in several cellular models is represented by the alteration of oxidative balance with the consequent accumulation of reactive oxygen species (ROS). It is well known that male germ cells are sensitive to oxidative stress and to changes in gravitational force, even though published data on germ cell models are scarce. We previously studied the effects of simulated microgravity (s-microgravity) on a 2D cultured TCam-2 seminoma-derived cell line, considered the only human cell line available to study in vitro mitotically active human male germ cells. In this study, we used a corresponding TCam-2 3D cell culture model that mimics cell-cell contacts in organ tissue to test the possible effects induced by s-microgravity exposure. TCam-2 cell spheroids were cultured for 24 h under unitary gravity (Ctr) or s-microgravity conditions, the latter obtained using a random positioning machine (RPM). A significant increase in intracellular ROS and mitochondria superoxide anion levels was observed after RPM exposure. In line with these results, a trend of protein and lipid oxidation increase and increased pCAMKII expression levels were observed after RPM exposure. The ultrastructural analysis via transmission electron microscopy revealed that RPM-exposed mitochondria appeared enlarged and, even if seldom, disrupted. Notably, even the expression of the main enzymes involved in the redox homeostasis appears modulated by RPM exposure in a compensatory way, with GPX1, NCF1, and CYBB being downregulated, whereas NOX4 and HMOX1 are upregulated. Interestingly, HMOX1 is involved in the heme catabolism of mitochondria cytochromes, and therefore the positive modulation of this marker can be associated with the observed mitochondria alteration. Altogether, these data demonstrate TCam-2 spheroid sensitivity to acute s-microgravity exposure and indicate the capability of these cells to trigger compensatory mechanisms that allow them to overcome the exposure to altered gravitational force.


Asunto(s)
Antioxidantes , Ingravidez , Humanos , Masculino , Especies Reactivas de Oxígeno , Mitocondrias , Esferoides Celulares
2.
Histochem Cell Biol ; 157(5): 547-556, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35201398

RESUMEN

Growth-associated protein 43 (GAP43) is found in skeletal muscle, localized near the calcium release units. In interaction with calmodulin (CaM), it indirectly modulates the activity of dihydropyridine and ryanodine Ca2+ channels. GAP43-CaM interaction plays a key role in intracellular Ca2+ homeostasis and, consequently, in skeletal muscle activity. The control of intracellular Ca2+ signaling is also an important functional requisite in cardiac physiology. The aim of this study is to define the impact of GAP43 on cardiac tissue at macroscopic and cellular levels, using GAP43 knockout (GAP43-/-) newborn C57/BL6 mice. Hearts from newborn GAP43-/- mice were heavier than hearts from wild-type (WT) ones. In these GAP43-/- hearts, histological section analyses revealed a thicker ventricular wall and interventricular septum with a reduced ventricular chamber area. In addition, increased collagen deposits between fibers and increased expression levels of myosin were observed in hearts from GAP43-/- mice. Cardiac tropism and rhythm are controlled by multiple intrinsic and extrinsic factors, including cellular events such those linked to intracellular Ca2+ dynamics, in which GAP43 plays a role. Our data revealed that, in the absence of GAP43, there were cardiac morphological alterations and signs of hypertrophy, suggesting that GAP43 could play a role in the functional processes of the whole cardiac muscle. This paves the way for further studies investigating GAP43 involvement in signaling dynamics at the cellular level.


Asunto(s)
Calmodulina , Remodelación Ventricular , Animales , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteína GAP-43/metabolismo , Corazón , Hipertrofia/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo
3.
Oxid Med Cell Longev ; 2022: 7714542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35047109

RESUMEN

This review is aimed at providing an overview of the key hallmarks of cardiomyocytes in physiological and pathological conditions. The main feature of cardiac tissue is the force generation through contraction. This process requires a conspicuous energy demand and therefore an active metabolism. The cardiac tissue is rich of mitochondria, the powerhouses in cells. These organelles, producing ATP, are also the main sources of ROS whose altered handling can cause their accumulation and therefore triggers detrimental effects on mitochondria themselves and other cell components thus leading to apoptosis and cardiac diseases. This review highlights the metabolic aspects of cardiomyocytes and wanders through the main systems of these cells: (a) the unique structural organization (such as different protein complexes represented by contractile, regulatory, and structural proteins); (b) the homeostasis of intracellular Ca2+ that represents a crucial ion for cardiac functions and E-C coupling; and (c) the balance of Zn2+, an ion with a crucial impact on the cardiovascular system. Although each system seems to be independent and finely controlled, the contractile proteins, intracellular Ca2+ homeostasis, and intracellular Zn2+ signals are strongly linked to each other by the intracellular ROS management in a fascinating way to form a "functional tetrad" which ensures the proper functioning of the myocardium. Nevertheless, if ROS balance is not properly handled, one or more of these components could be altered resulting in deleterious effects leading to an unbalance of this "tetrad" and promoting cardiovascular diseases. In conclusion, this "functional tetrad" is proposed as a complex network that communicates continuously in the cardiomyocytes and can drive the switch from physiological to pathological conditions in the heart.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados , Oxidación-Reducción
4.
Oxid Med Cell Longev ; 2021: 9951113, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986919

RESUMEN

Microgravity affects human cardiovascular function inducing heart rhythm disturbances and even cardiac atrophy. The mechanisms triggered by microgravity and the search for protection strategies are difficult to be investigated in vivo. This study is aimed at investigating the effects induced by simulated microgravity on a cardiomyocyte-like phenotype. The Random Positioning Machine (RPM), set in a CO2 incubator, was used to simulate microgravity, and H9C2 cell line was used as the cardiomyocyte-like model. H9C2 cells were exposed to simulated microgravity up to 96 h, showing a slower cell proliferation rate and lower metabolic activity in comparison to cell grown at earth gravity. In exposed cells, these effects were accompanied by increased levels of intracellular reactive oxygen species (ROS), cytosolic Ca2+, and mitochondrial superoxide anion. Protein carbonyls, markers of protein oxidation, were significantly increased after the first 48 h of exposition in the RPM. In these conditions, the presence of an antioxidant, the N-acetylcysteine (NAC), counteracted the effects induced by the simulated microgravity. In conclusion, these data suggest that simulated microgravity triggers a concomitant increase of intracellular ROS and Ca2+ levels and affects cell metabolic activity which in turn could be responsible for the slower proliferative rate. Nevertheless, the very low number of detectable dead cells and, more interestingly, the protective effect of NA, demonstrate that simulated microgravity does not have "an irreversible toxic effect" but, affecting the oxidative balance, results in a transient slowdown of proliferation.


Asunto(s)
Miocitos Cardíacos/metabolismo , Estrés Oxidativo/fisiología , Línea Celular Tumoral , Proliferación Celular , Humanos
5.
Int J Mol Sci ; 21(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455731

RESUMEN

The effects induced by microgravity on human body functions have been widely described, in particular those on skeletal muscle and bone tissues. This study aims to implement information on the possible countermeasures necessary to neutralize the oxidative imbalance induced by microgravity on osteoblastic cells. Using the model of murine MC3T3-E1 osteoblast cells, cellular morphology, proliferation, and metabolism were investigated during exposure to simulated microgravity on a random positioning machine in the absence or presence of an antioxidant-the 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Our results confirm that simulated microgravity-induced morphological and metabolic alterations characterized by increased levels of reactive oxygen species and a slowdown of the proliferative rate. Interestingly, the use of Trolox inhibited the simulated microgravity-induced effects. Indeed, the antioxidant-neutralizing oxidants preserved cell cytoskeletal architecture and restored cell proliferation rate and metabolism. The use of appropriate antioxidant countermeasures could prevent the modifications and damage induced by microgravity on osteoblastic cells and consequently on bone homeostasis.


Asunto(s)
Antioxidantes/farmacología , Cromanos/farmacología , Osteoblastos/efectos de los fármacos , Ingravidez/efectos adversos , Animales , Calcio/metabolismo , Línea Celular , Proliferación Celular , Citoesqueleto/metabolismo , Ratones , Osteoblastos/metabolismo , Osteoblastos/fisiología , Estrés Oxidativo
6.
Int J Mol Sci ; 20(8)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999563

RESUMEN

The presence of microgravity conditions deeply affects the human body functions at the systemic, organ and cellular levels. This study aimed to investigate the effects induced by simulated-microgravity on non-stimulated Jurkat lymphocytes, an immune cell phenotype considered as a biosensor of the body responses, in order to depict at the cellular level the effects of such a peculiar condition. Jurkat cells were grown at 1 g or on random positioning machine simulating microgravity. On these cells we performed: morphological, cell cycle and proliferation analyses using cytofluorimetric and staining protocols-intracellular Ca2+, reactive oxygen species (ROS), mitochondria membrane potential and O2- measurements using fluorescent probes-aconitase and mitochondria activity, glucose and lactate content using colorimetric assays. After the first exposure days, the cells showed a more homogeneous roundish shape, an increased proliferation rate, metabolic and detoxifying activity resulted in decreased intracellular Ca2+ and ROS. In the late exposure time, the cells adapted to the new environmental condition. Our non-activated proliferating Jurkat cells, even if responsive to altered external forces, adapted to the new environmental condition showing a healthy status. In order to define the cellular mechanism(s) triggered by microgravity, developing standardized experimental approaches and controlled cell culture and simulator conditions is strongly recommended.


Asunto(s)
Linfocitos/citología , Simulación de Ingravidez , Calcio/metabolismo , Forma de la Célula , Glucosa/metabolismo , Humanos , Células Jurkat , Linfocitos/metabolismo , Potencial de la Membrana Mitocondrial , Estrés Oxidativo , Oxígeno/metabolismo
7.
Stem Cell Rev Rep ; 15(4): 574-589, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30955192

RESUMEN

The ionotropic P2X7 receptor (P2X7R) is involved in bone homeostasis but its role in osteogenesis is controversial. Thus, we investigated the expression of P2X7R and the effects exerted by its modulation in mesenchymal stromal cells from human subcutaneous adipose tissue (S-ASCs), which have potential therapeutic application in bone regenerative medicine. We found that undifferentiated S-ASCs expressed P2X7R and its functional splice variants P2X7AR and P2X7BR. Cell stimulation by P2X7R agonist BzATP (100 µM) neither modified proliferation nor caused membrane pore opening while increasing intracellular Ca2+ levels and migration. The P2X7R antagonist A438079 reversed these effects. However, 25-100 µM BzATP, administered to S-ASCs undergoing osteogenic differentiation, dose-dependently decreased extracellular matrix mineralization and expression of osteogenic transcription factors Runx2, alkaline phosphatase and osteopontin. These effects were not coupled to cell proliferation reduction or to cell death increase, but were associated to decrease in P2X7AR and P2X7BR expression. In contrast, expression of P2X7R, especially P2X7BR isoform, significantly increased during the osteogenic process. Noteworthy, the antagonist A438079, administered alone, at first restrained cell differentiation, enhancing it later. Accordingly, A438079 reversed BzATP effects only in the second phase of S-ASCs osteogenic differentiation. Apyrase, a diphosphohydrolase converting ATP/ADP into AMP, showed a similar behavior. Altogether, findings related to A438079 or apyrase effects suggest an earlier and prevailing pro-osteogenic activity by endogenous ATP and a later one by adenosine derived from endogenous ATP metabolism. Conversely, P2X7R pharmacological stimulation by BzATP, mimicking the effects of high ATP levels occurring during tissue injuries, depressed receptor expression/activity impairing MSC osteogenic differentiation.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Receptores Purinérgicos P2X7/metabolismo , Grasa Subcutánea/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Grasa Subcutánea/citología
8.
Biomed Res Int ; 2017: 2460215, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28607928

RESUMEN

Extremely low-frequency electromagnetic fields (ELF-EMFs) can interact with biological systems. Although they are successfully used as therapeutic agents in physiatrics and rehabilitative practice, they might represent environmental pollutants and pose a risk to human health. Due to the lack of evidence of their mechanism of action, the effects of ELF-EMFs on differentiation processes in skeletal muscle were investigated. C2C12 myoblasts were exposed to ELF-EMFs generated by a solenoid. The effects of ELF-EMFs on cell viability and on growth and differentiation rates were studied using colorimetric and vital dye assays, cytomorphology, and molecular analysis of MyoD and myogenin expression, respectively. The establishment of functional gap junctions was investigated analyzing connexin 43 expression levels and measuring cell permeability, using microinjection/dye-transfer assays. The ELF-EMFs did not affect C2C12 myoblast viability or proliferation rate. Conversely, at ELF-EMF intensity in the mT range, the myogenic process was accelerated, through increased expression of MyoD, myogenin, and connexin 43. The increase in gap-junction function suggests promoting cell fusion and myotube differentiation. These data provide the first evidence of the mechanism through which ELF-EMFs may provide therapeutic benefits and can resolve, at least in part, some conditions of muscle dysfunction.


Asunto(s)
Conexina 43/genética , Campos Electromagnéticos , Proteína MioD/genética , Miogenina/genética , Animales , Comunicación Celular/efectos de la radiación , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Ratones , Desarrollo de Músculos/efectos de la radiación , Mioblastos/efectos de la radiación
9.
Front Physiol ; 7: 493, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833566

RESUMEN

Neuronal growth-associated protein 43 (GAP43) has crucial roles in the nervous system, and during development, regeneration after injury, and learning and memory. GAP43 is expressed in mouse skeletal muscle fibers and satellite cells, with suggested its involvement in intracellular Ca2+ handling. However, the physiological role of GAP43 in muscle remains unknown. Using a GAP43-knockout (GAP43-/-) mouse, we have defined the role of GAP43 in skeletal muscle. GAP43-/- mice showed low survival beyond weaning, reduced adult body weight, decreased muscle strength, and changed myofiber ultrastructure, with no significant differences in the expression of markers of satellite cell and myotube progression through the myogenic program. Thus, GAP43 expression is involved in timing of muscle maturation in-vivo. Intracellular Ca2+ measurements in-vitro in myotubes revealed GAP43 involvement in Ca2+ handling. In the absence of GAP43 expression, the spontaneous Ca2+ variations had greater amplitudes and higher frequency. In GAP43-/- myotubes, also the intracellular Ca2+ variations induced by the activation of dihydropyridine and ryanodine Ca2+ channels, resulted modified. These evidences suggested dysregulation of Ca2+ homeostasis. The emerging hypothesis indicates that GAP43 interacts with calmodulin to indirectly modulate the activities of dihydropyridine and ryanodine Ca2+ channels. This thus influences intracellular Ca2+ dynamics and its related intracellular patterns, from functional excitation-contraction coupling, to cell metabolism, and gene expression.

10.
Cell Signal ; 28(11): 1631-41, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27478064

RESUMEN

Stem cells isolated from human adult tissue niche represent a promising source for neural differentiation. Human Periodontal Ligament Stem Cells (hPDLSCs) originating from the neural crest are particularly suitable for induction of neural commitment. In this study, under xeno-free culture conditions, in undifferentiated hPDLSCs and in hPDLSCs induced to neuronal differentiation by basic Fibroblast Growth Factor, the level of some neural markers have been analyzed. The hPDLSCs spontaneously express Nestin, a neural progenitor marker. In these cells, the neurogenic process induced to rearrange the cytoskeleton, form neurospheres and express higher levels of Nestin and Tyrosine Hydroxylase, indicating neural induction. Protein Kinase C (PKC) is highly expressed in neural tissue and has a key role in neuronal functions. In particular the Ca(2+) and diacylglycerol-dependent activation of PKCα isozyme is involved in the regulation of neuronal differentiation. Another main component of the pathways controlling neuronal differentiation is the Growth Associated Protein-43 (GAP-43), whose activity is strictly regulated by PKC. The aim of this study is to investigate the role of PKCα/GAP-43 nuclear signal transduction pathway during neuronal commitment of hPDLSCs. During hPDLSCs neurogenic commitment the levels of p-PKC and p-GAP-43 increased both in cytoplasmic and nuclear compartment. PKCα nuclear translocation induced GAP-43 movement to the cytoplasm, where it is known to regulate growth cone dynamics and neuronal differentiation. Moreover, the degree of cytosolic Ca(2+) mobilization appeared to be more pronounced in differentiated hPDLSCs than in undifferentiated cells. This study provides evidences of a new PKCα/GAP-43 nuclear signalling pathway that controls neuronal differentiation in hPDLSCs, leading the way to a potential use of these cells in cell-based therapy in neurodegenerative diseases.


Asunto(s)
Núcleo Celular/metabolismo , Cresta Neural/citología , Neurogénesis , Ligamento Periodontal/citología , Proteína Quinasa C-alfa/metabolismo , Células Madre/citología , Células Madre/enzimología , Biomarcadores/metabolismo , Calcio/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Proteína GAP-43/metabolismo , Humanos , Espacio Intracelular/metabolismo , Isoenzimas/metabolismo , Neuronas/citología , Neuronas/enzimología , Transporte de Proteínas
11.
Cell Physiol Biochem ; 36(1): 259-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25967965

RESUMEN

BACKGROUND/AIMS: Mesenchymal stem cells from human amniotic fluid (huAFMSCs) can differentiate into multiple lineages and are not tumorigenic after transplantation, making them good candidates for therapeutic purposes. The aim was to determine the effects of calcitonin on these huAFMSCs during osteogenic differentiation, in terms of the physiological role of calcitonin in bone homeostasis. METHODS: For huAFMSCs cultured under different conditions, we assayed: expression of the calcitonin receptor, using immunolabelling techniques; proliferation and osteogenesis, using colorimetric and enzymatic assays; intracellular Ca(2+) and cAMP levels, using videomicroscopy and spectrophotometry. RESULTS: The calcitonin receptor was expressed in proliferating and osteo-differentiated huAFMSCs. Calcitonin triggered intracellular Ca(2+) increases and cAMP production. Its presence in cell medium also induced dose-dependent inhibitory effects on proliferation and increased osteogenic differentiation of huAFMSCs, as also indicated by enhancement of specific markers and alkaline phosphatase activity. CONCLUSIONS: These data show that huAFMSCs represent a potential osteogenic model to study in-vitro cell responses to calcitonin (and other members of the calcitonin family). This leads the way to the opening of new lines of research that will add new insight both in cell therapies and in the pharmacological use of these molecules.


Asunto(s)
Líquido Amniótico/citología , Calcitonina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Líquido Amniótico/efectos de los fármacos , Líquido Amniótico/metabolismo , Biomarcadores/metabolismo , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Femenino , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Embarazo , Receptores de Calcitonina/metabolismo
12.
Biomed Res Int ; 2015: 754283, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25654124

RESUMEN

We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neuroglía/citología , Neuroglía/fisiología , Reactores Biológicos , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Humanos , Ingravidez
13.
Stem Cells Dev ; 24(12): 1415-28, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25608581

RESUMEN

Mesenchymal Stem Cells derived from Amniotic Fluid (AFMSCs) are multipotent cells of great interest for regenerative medicine. Two predominant cell types, that is, Epithelial-like (E-like) and Fibroblast-like (F-like), have been previously detected in the amniotic fluid (AF). In this study, we examined the AF from 12 donors and observed the prevalence of the E-like phenotype in 5, whereas the F-like morphology was predominant in 7 samples. These phenotypes showed slight differences in membrane markers, with higher CD90 and lower Sox2 and SSEA-4 expression in F-like than in E-like cells; whereas CD326 was expressed only in the E-like phenotype. They did not show any significant differences in osteogenic, adipogenic or chondrogenic differentiation. Proteomic analysis revealed that samples with a predominant E-like phenotype (HC1) showed a different profile than those with a predominant F-like phenotype (HC2). Twenty-five and eighteen protein spots were differentially expressed in HC1 and HC2 classes, respectively. Of these, 17 from HC1 and 4 from HC2 were identified by mass spectrometry. Protein-interaction networks for both phenotypes showed strong interactions between specific AFMSC proteins and molecular chaperones, such as preproteasomes and mature proteasomes, both of which are important for cell cycle regulation and apoptosis. Collectively, our results provide evidence that, regardless of differences in protein profiling, the prevalence of E-like or F-like cells in AF does not affect the differentiation capacity of AFMSC preparations. This may be valuable information with a view to the therapeutic use of AFMSCs.


Asunto(s)
Líquido Amniótico/citología , Diferenciación Celular/genética , Células Epiteliales/citología , Fibroblastos/citología , Células Madre Mesenquimatosas/citología , Amniocentesis , Líquido Amniótico/metabolismo , Linaje de la Célula , Células Epiteliales/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Embarazo , Biosíntesis de Proteínas/genética , Mapas de Interacción de Proteínas/genética , Proteómica , Medicina Regenerativa
14.
PLoS One ; 9(9): e107753, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25229238

RESUMEN

Muscle regeneration involves the activation of satellite cells, is regulated at the genetic and epigenetic levels, and is strongly influenced by gene activation and environmental conditions. The aim of this study was to determine whether the overexpression of mIGF-1 can modify functional features of satellite cells during the differentiation process, particularly in relation to modifications of intracellular Ca2+ handling. Satellite cells were isolated from wild-type and MLC/mIGF-1 transgenic mice. The cells were differentiated in vitro, and morphological analyses, intracellular Ca2+ measurements, and ionic current recordings were performed. mIGF-1 overexpression accelerates satellite cell differentiation and promotes myotube hypertrophy. In addition, mIGF-1 overexpression-induced potentiation of myogenesis triggers both quantitative and qualitative changes to the control of intracellular Ca2+ handling. In particular, the differentiated MLC/mIGF-1 transgenic myotubes have reduced velocity and amplitude of intracellular Ca2+ increases after stimulation with caffeine, KCl and acetylcholine. This appears to be due, at least in part, to changes in the physico-chemical state of the sarcolemma (increased membrane lipid oxidation, increased output currents) and to increased expression of dihydropyridine voltage-operated Ca2+ channels. Interestingly, extracellular ATP and GTP evoke intracellular Ca2+ mobilization to greater extents in the MLC/mIGF-1 transgenic satellite cells, compared to the wild-type cells. These data suggest that these MLC/mIGF-1 transgenic satellite cells are more sensitive to trophic stimuli, which can potentiate the effects of mIGF-1 on the myogenic programme.


Asunto(s)
Calcio/metabolismo , Diferenciación Celular , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Animales , Fenómenos Electrofisiológicos , Espacio Extracelular/metabolismo , Homeostasis , Hipertrofia/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Fluidez de la Membrana , Ratones , Ratones Transgénicos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Cadenas Ligeras de Miosina/genética , Estrés Oxidativo
15.
PLoS One ; 8(9): e73816, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040082

RESUMEN

Amniotic fluid-derived stem (AFS) cells have been identified as a promising source for cell therapy applications in bone traumatic and degenerative damage. Calcium Sensing Receptor (CaSR), a G protein-coupled receptor able to bind calcium ions, plays a physiological role in regulating bone metabolism. It is expressed in different kinds of cells, as well as in some stem cells. The bone CaSR could potentially be targeted by allosteric modulators, in particular by agonists such as calcimimetic R-568, which may potentially be helpful for the treatment of bone disease. The aim of our study was first to investigate the presence of CaSR in ovine Amniotic Fluid Mesenchymal Stem Cells (oAFMSCs) and then the potential role of calcimimetics in in vitro osteogenesis. oAFMSCs were isolated, characterized and analyzed to examine the possible presence of CaSR by western blotting and flow cytometry analysis. Once we had demonstrated CaSR expression, we worked out that 1 µM R-568 was the optimal and effective concentration by cell viability test (MTT), cell number, Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) assays. Interestingly, we observed that basal diffuse CaSR expression in oAFMSCs increased at the membrane when cells were treated with R-568 (1 µM), potentially resulting in activation of the receptor. This was associated with significantly increased cell mineralization (ALP and ARS staining) and augmented intracellular calcium and Inositol trisphosphate (IP3) levels, thus demonstrating a potential role for calcimimetics during osteogenic differentiation. Calhex-231, a CaSR allosteric inhibitor, totally reversed R-568 induced mineralization. Taken together, our results demonstrate for the first time that CaSR is expressed in oAFMSCs and that calcimimetic R-568, possibly through CaSR activation, can significantly improve the osteogenic process. Hence, our study may provide useful information on the mechanisms regulating osteogenesis in oAFMSCs, perhaps prompting the use of calcimimetics in bone regenerative medicine.


Asunto(s)
Líquido Amniótico/citología , Compuestos de Anilina/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Receptores Sensibles al Calcio/metabolismo , Fosfatasa Alcalina/metabolismo , Compuestos de Anilina/química , Animales , Benzamidas/farmacología , Western Blotting , Calcio/agonistas , Calcio/metabolismo , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ciclohexilaminas/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Citometría de Flujo , Inositol 1,4,5-Trifosfato/metabolismo , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Fenetilaminas , Propilaminas , Receptores Sensibles al Calcio/antagonistas & inhibidores , Ovinos , Estereoisomerismo
16.
Br J Nutr ; 110(5): 797-809, 2013 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-23433299

RESUMEN

Grape seed extract (GSE) from Italia, Palieri and Red Globe cultivars inhibits cell growth and induces apoptosis in Caco-2 human colon cancer cells in a dose-dependent manner. In order to investigate the mechanism(s) supporting the apoptotic process, we analysed reactive oxygen species (ROS) production, intracellular Ca2+ handling and extracellular signal-regulated kinase (ERK) activation. Upon exposure to GSE, ROS and intracellular Ca2+ levels increased in Caco-2 cells, concomitantly with ERK inactivation. As ERK activity is thought to be essential for promoting survival pathways, inhibition of this kinase is likely to play a relevant role in GSE-mediated anticancer effects. Indeed, pretreatment with N-acetyl cysteine, a ROS scavenger, reversed GSE-induced apoptosis, and promoted ERK phosphorylation. This effect was strengthened by ethylene glycol tetraacetic acid-mediated inhibition of extracellular Ca2+ influx. ROS and Ca2+ influx inhibition, in turn, increased ERK phosphorylation, and hence almost entirely suppressed GSE-mediated apoptosis. These data suggested that GSE triggers a previously unrecognised ERK-based mechanism, involving both ROS production and intracellular Ca2+ increase, eventually leading to apoptosis in cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Calcio/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Extracto de Semillas de Uva/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células CACO-2 , Señalización del Calcio/efectos de los fármacos , Neoplasias del Colon/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
17.
PLoS One ; 8(1): e53267, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23308181

RESUMEN

The neuronal Growth Associated Protein 43 (GAP43), also known as B-50 or neuromodulin, is involved in mechanisms controlling pathfinding and branching of neurons during development and regeneration. For many years this protein was classified as neuron-specific, but recent evidences suggest that a) GAP43 is expressed in the nervous system not only in neurons, but also in glial cells, and b) probably it is present also in other tissues. In particular, its expression was revealed in muscles from patients affected by various myopathies, indicating that GAP43 can no-longer considered only as a neuron-specific molecule. We have investigated the expression and subcellular localization of GAP43 in mouse satellite cells, myotubes, and adult muscle (extensor digitorum longus or EDL) using Western blotting, immuno-fluorescence combined to confocal microscopy and electron microscopy. Our in vitro results indicated that GAP43 is indeed expressed in both myoblasts and differentiating myotubes, and its cellular localization changes dramatically during maturation: in myoblasts the localization appeared to be mostly nuclear, whereas with differentiation the protein started to display a sarcomeric-like pattern. In adult fibers, GAP43 expression was evident with the protein labeling forming (in longitudinal views) a double cross striation reminiscent of the staining pattern of other organelles, such as calcium release units (CRUs) and mitochondria. Double immuno-staining and experiments done in EDL muscles fixed at different sarcomere lengths, allowed us to determine the localization, from the sarcomere Z-line, of GAP43 positive foci, falling between that of CRUs and of mitochondria. Staining of cross sections added a detail to the puzzle: GAP43 labeling formed a reticular pattern surrounding individual myofibrils, but excluding contractile elements. This work leads the way to further investigation about the possible physiological and structural role of GAP43 protein in adult fiber function and disease.


Asunto(s)
Calcio/metabolismo , Proteína GAP-43/análisis , Proteína GAP-43/metabolismo , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Animales , Diferenciación Celular , Línea Celular , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/citología
18.
Atherosclerosis ; 226(1): 88-94, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23177014

RESUMEN

OBJECTIVE: Inducible nitric oxide synthase (iNOS) expression may be increased by cytokine plasma levels contributing to vascular damage in diabetes. Besides transcriptional regulation, Ca(2+)/CaMKII may play a role in post-translationally controlled iNOS activity. We accordingly investigated the involvement of the Ca(2+)/CaMKIIδ(2) signaling pathway in regulating lipopolysaccharide (LPS)-induced iNOS activity in cultured aortic vascular smooth muscle cells (VSMCs) from diabetic rats. METHODS AND RESULTS: VSMCs obtained from 10 diabetic rats (DR) and 10 control rats (CR) were stimulated with 20 µg/ml LPS. After 24 h, iNOS protein levels were 1.37 fold increased in DR- vs CR-VSMCs (p < 0.05; Western Blot), while iNOS activity (conversion l-((3)H)-arginine into l-((3)H)-citrulline) and intracellular nitrotyrosine levels (immunofluorescence) were about 2.7 fold greater in DR- than in CR-VSMCs. Interestingly, LPS increased intracellular Ca(2+) levels (Fluorescence video imaging) more markedly in DR- than in CR-VSMCs. This was associated with CaMKII activation by phosphorylation, a decreased amount of co-immunoprecipitating iNOS/CaMKIIδ(2) (Western Blot) and increased iNOS activity. The CaMKII inhibitor KN-93 abolished all the LPS-effects. CONCLUSION: These results indicate that the Ca(2+)/CaMKIIδ(2) signaling pathway may be an important regulator of iNOS activity in diabetes, and hence contribute to the potential development of innovative therapeutic strategies for vascular complications in diabetes.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Diabetes Mellitus Experimental/enzimología , Músculo Liso Vascular/citología , Músculo Liso Vascular/enzimología , Óxido Nítrico Sintasa de Tipo II/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
19.
PLoS One ; 7(1): e30682, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22295103

RESUMEN

BACKGROUND: Calcimimetics, such as R-568, are thought to activate G protein-linked Ca(2+)-sensing receptor (CaSR) by allosterically increasing the affinity of the receptor for Ca(2+) allowing for efficient control of uremic hyperparathyroidism. Several recent studies suggest they possess additional vascular actions. Although it has been postulated that calcimimetics may have a direct effect on CaSR in the blood vessels, further studies are needed to elucidate their vascular CaSR-dependent versus CaSR-independent effects. METHODOLOGY/PRINCIPAL FINDINGS: Focusing on human umbilical vein endothelial cells (HUVECs), we studied the CaSR expression and distribution by Immunofluorescence and Western Blot analysis. CaSR function was evaluated by measuring the potential effect of calcimimetic R-568 and its enantiomer S-568 upon the modulation of intracellular Ca(2+) levels (using a single cell approach and FURA-2AM), in the presence or absence of Calhex-231, a negative modulator of CaSR. To address their potential vascular functions, we also evaluated R- and S-568-stimulated enzymatic release of Nitric Oxide (NO) by DAF-2DA, by Nitric Oxide Synthase (NOS) radiometric assay (both in HUVECs and in Human Aortic Endothelial Cells) and by measuring eNOS-ser1177 phosphorylation levels (Immunoblotting). We show that, although the CaSR protein was expressed in HUVECs, it was mainly distributed in cytoplasm while the functional CaSR dimers, usually localized on the plasma membrane, were absent. In addition, regardless of the presence or absence of Calhex-231, both R- and S-568 significantly increased intracellular Ca(2+) levels by mobilization of Ca(2+) from intracellular stores, which in turn augmented NO release by a time- and Ca(2+)-dependent increase in eNOS-ser1177 phosphorylation levels. CONCLUSIONS/SIGNIFICANCE: Taken together, these data indicate that in human endothelium there is no stereoselectivity in the responses to calcimimetics and that CaSR is probably not involved in the action of R- and S-568. This suggests an additional mechanism in support of the CaSR-independent role of calcimimetics as vasculotrope agents.


Asunto(s)
Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Calcimiméticos/química , Calcimiméticos/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Óxido Nítrico/metabolismo , Aorta/citología , Calcio/metabolismo , Activación Enzimática/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenetilaminas , Propilaminas , Receptores Sensibles al Calcio/metabolismo , Estereoisomerismo
20.
High Alt Med Biol ; 11(4): 333-42, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21190502

RESUMEN

Depending on the absolute altitude and the duration of exposure, a high altitude environment induces various cellular effects that are strictly related to changes in oxidative balance. In this study, we used in vitro isolated peripheral blood lymphocytes as biosensors to test the effect of hypobaric hypoxia on seven climbers by measuring the functional activity of these cells. Our data revealed that a 21-day exposure to high altitude (5000 m) (1) increased intracellular Ca(2+) concentration, (2) caused a significant decrease in mitochondrial membrane potential, and (3) despite possible transient increases in intracellular levels of reactive oxygen species, did not significantly change the antioxidant and/or oxidative damage-related status in lymphocytes and serum, assessed by measuring Trolox-equivalent antioxidant capacity, glutathione peroxidase activity, vitamin levels, and oxidatively modified proteins and lipids. Overall, these results suggest that high altitude might cause an impairment in adaptive antioxidant responses. This, in turn, could increase the risk of oxidative-stress-induced cellular damage. In addition, this study corroborates the use of peripheral blood lymphocytes as an easily handled model for monitoring adaptive response to environmental challenge.


Asunto(s)
Aclimatación/fisiología , Altitud , Linfocitos/metabolismo , Modelos Biológicos , Antioxidantes/metabolismo , Biomarcadores/sangre , Calcio/metabolismo , Carotenoides/sangre , Recuento de Células , Glutatión Peroxidasa/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido , Licopeno , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Estrés Oxidativo , Carbonilación Proteica , Vitamina A/sangre , Vitamina E/sangre , beta Caroteno/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA