Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sensors (Basel) ; 22(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36081033

RESUMEN

Hyperspectral aerial imagery is becoming increasingly available due to both technology evolution and a somewhat affordable price tag. However, selecting a proper UAV + hyperspectral sensor combo to use in specific contexts is still challenging and lacks proper documental support. While selecting an UAV is more straightforward as it mostly relates with sensor compatibility, autonomy, reliability and cost, a hyperspectral sensor has much more to be considered. This note provides an assessment of two hyperspectral sensors (push-broom and snapshot) regarding practicality and suitability, within a precision viticulture context. The aim is to provide researchers, agronomists, winegrowers and UAV pilots with dependable data collection protocols and methods, enabling them to achieve faster processing techniques and helping to integrate multiple data sources. Furthermore, both the benefits and drawbacks of using each technology within a precision viticulture context are also highlighted. Hyperspectral sensors, UAVs, flight operations, and the processing methodology for each imaging type' datasets are presented through a qualitative and quantitative analysis. For this purpose, four vineyards in two countries were selected as case studies. This supports the extrapolation of both advantages and issues related with the two types of hyperspectral sensors used, in different contexts. Sensors' performance was compared through the evaluation of field operations complexity, processing time and qualitative accuracy of the results, namely the quality of the generated hyperspectral mosaics. The results shown an overall excellent geometrical quality, with no distortions or overlapping faults for both technologies, using the proposed mosaicking process and reconstruction. By resorting to the multi-site assessment, the qualitative and quantitative exchange of information throughout the UAV hyperspectral community is facilitated. In addition, all the major benefits and drawbacks of each hyperspectral sensor regarding its operation and data features are identified. Lastly, the operational complexity in the context of precision agriculture is also presented.


Asunto(s)
Cytisus , Tecnología de Sensores Remotos , Agricultura , Recolección de Datos , Tecnología de Sensores Remotos/métodos , Reproducibilidad de los Resultados
2.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35009770

RESUMEN

Crop sustainability is essential for balancing economic development and environmental care, mainly in strong and very competitive regions in the agri-food sector, such as the Region of Murcia in Spain, considered to be the orchard of Europe, despite being a semi-arid area with an important scarcity of fresh water. In this region, farmers apply efficient techniques to minimize supplies and maximize quality and productivity; however, the effects of climate change and the degradation of significant natural environments, such as, the "Mar Menor", the most extent saltwater lagoon of Europe, threatened by resources overexploitation, lead to the search of even better irrigation management techniques to avoid certain effects which could damage the quaternary aquifer connected to such lagoon. This paper describes the Irriman Platform, a system based on Cloud Computing techniques, which includes low-cost wireless data loggers, capable of acquiring data from a wide range of agronomic sensors, and a novel software architecture for safely storing and processing such information, making crop monitoring and irrigation management easier. The proposed platform helps agronomists to optimize irrigation procedures through a usable web-based tool which allows them to elaborate irrigation plans and to evaluate their effectiveness over crops. The system has been deployed in a large number of representative crops, located along near 50,000 ha of the surface, during several phenological cycles. Results demonstrate that the system enables crop monitoring and irrigation optimization, and makes interaction between farmers and agronomists easier.


Asunto(s)
Agricultura , Nube Computacional , Riego Agrícola , Cambio Climático , Productos Agrícolas , Granjas
3.
Foods ; 9(6)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630513

RESUMEN

The bioelectrical impedance analysis (BIA) is a non-destructive technique that has been successfully used to assess the body and carcass composition of farm species. This study aimed to predict intramuscular fat (IMF) and physicochemical traits in the longissimus thoracis et lumborum muscle (LM) of beef, using BIA. These traits were evaluated in LM samples of 52 crossbred heifer carcasses. The BIA was performed in LM, using a 50 Hz frequency high precision impedance converter system. A correlation analysis of the studied variables was performed. Then a stepwise with a k-folds cross validation procedure was used to modelling the prediction of IMF and physicochemical traits from BIA parameters (24.5% ≤ CV ≤ 47.3%). Wide variation was found for IMF and BIA parameters. In general, correlations of BIA parameters with IMF and physicochemical traits were moderate to high and were similar for all BIA parameters (-0.50 ≤ r ≤ 0.50 only for total pigments, a* and pH48). It was possible to predict IMF and physicochemical traits from BIA. The best fit explained 79.3% of the variation in IMF, while for physicochemical traits the best fits were for sarcomere length and shear force (64.4% and 60.5%, respectively). The results confirmed the potential of BIA for objective measurement of meat quality.

4.
Sensors (Basel) ; 19(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703313

RESUMEN

Frequently, the vineyards in the Douro Region present multiple grape varieties per parcel and even per row. An automatic algorithm for grape variety identification as an integrated software component was proposed that can be applied, for example, to a robotic harvesting system. However, some issues and constraints in its development were highlighted, namely, the images captured in natural environment, low volume of images, high similarity of the images among different grape varieties, leaf senescence, and significant changes on the grapevine leaf and bunch images in the harvest seasons, mainly due to adverse climatic conditions, diseases, and the presence of pesticides. In this paper, the performance of the transfer learning and fine-tuning techniques based on AlexNet architecture were evaluated when applied to the identification of grape varieties. Two natural vineyard image datasets were captured in different geographical locations and harvest seasons. To generate different datasets for training and classification, some image processing methods, including a proposed four-corners-in-one image warping algorithm, were used. The experimental results, obtained from the application of an AlexNet-based transfer learning scheme and trained on the image dataset pre-processed through the four-corners-in-one method, achieved a test accuracy score of 77.30%. Applying this classifier model, an accuracy of 89.75% on the popular Flavia leaf dataset was reached. The results obtained by the proposed approach are promising and encouraging in helping Douro wine growers in the automatic task of identifying grape varieties.

5.
Med Eng Phys ; 73: 77-84, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31477429

RESUMEN

Recent studies highlight the ability of inductive architectures to deliver therapeutic magnetic stimuli to target tissues and to be embedded into small-scale intracorporeal medical devices. However, to date, current micro-scale biomagnetic devices require very high electric current excitations (usually exceeding 1 A) to ensure the delivery of efficient magnetic flux densities. This is a critical problem as advanced implantable devices demand self-powering, stand-alone and long-term operation. This work provides, for the first time, a novel small-scale magnetic stimulation system that requires up to 50-fold lower electric current excitations than required by relevant biomagnetic technology recently proposed. Computational models were developed to analyse the magnetic stimuli distributions and densities delivered to cellular tissues during in vitro experiments, such that the feasibility of this novel stimulator can be firstly evaluated on cell culture tests. The results demonstrate that this new stimulative technology is able to deliver osteogenic stimuli (0.1-7 mT range) by current excitations in the 0.06-4.3 mA range. Moreover, it allows coil designs with heights lower than 1 mm without significant loss of magnetic stimuli capability. Finally, suitable core diameters and stimulator-stimulator distances allow to define heterogeneity or quasi-homogeneity stimuli distributions. These results support the design of high-sophisticated biomagnetic devices for a wide range of therapeutic applications.


Asunto(s)
Conductividad Eléctrica , Magnetoterapia/instrumentación , Prótesis e Implantes
6.
Expert Rev Med Devices ; 11(6): 617-35, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25234709

RESUMEN

This paper reviews instrumented hip joint replacements, instrumented femoral replacements and instrumented femoral fracture stabilizers. Examination of the evolution of such implants was carried out, including the detailed analysis of 16 architectures, designed by 8 research teams and implanted in 32 patients. Their power supply, measurement, communication, processing and actuation systems were reviewed, as were the tests carried out to evaluate their performance and safety. These instrumented implants were only designed to measure biomechanical and thermodynamic quantities in vivo, in order to use such data to conduct research projects and optimize rehabilitation processes. The most promising trend is to minimize aseptic loosening and/or infection following hip or femoral replacements or femoral stabilization procedures by using therapeutic actuators inside instrumented implants to apply controlled stimuli in the bone-implant interface.


Asunto(s)
Fracturas del Fémur/diagnóstico , Fracturas del Fémur/cirugía , Fémur/cirugía , Prótesis de Cadera , Fijadores Internos , Monitoreo Ambulatorio/instrumentación , Tecnología Inalámbrica/instrumentación , Electrónica Médica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Evaluación de la Tecnología Biomédica
7.
J Biomech ; 46(15): 2561-71, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24050511

RESUMEN

Instrumented hip implants were proposed as a method to monitor and predict the biomechanical and thermal environment surrounding such implants. Nowadays, they are being developed as active implants with the ability to prevent failures by loosening. The generation of electric energy to power active mechanisms of instrumented hip implants remains a question. Instrumented implants cannot be implemented without effective electric power systems. This paper surveys the power supply systems of seventeen implant architectures already implanted in-vivo, namely from instrumented hip joint replacements and instrumented fracture stabilizers. Only inductive power links and batteries were used in-vivo to power the implants. The energy harvesting systems, which were already designed to power instrumented hip implants, were also analyzed focusing their potential to overcome the disadvantages of both inductive-based and battery-based power supply systems. From comparative and critical analyses of the methods to power instrumented implants, one can conclude that: inductive powering and batteries constrain the full operation of instrumented implants; motion-driven electromagnetic energy harvesting is a promising method to power instrumented passive and active hip implants.


Asunto(s)
Suministros de Energía Eléctrica , Prótesis de Cadera , Humanos , Falla de Prótesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA