Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mycoses ; 63(6): 610-616, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32301521

RESUMEN

BACKGROUND: Trichophyton rubrum is the most common aetiological agent of human dermatophytoses. These infections mainly occur in keratinised layers such as skin, hair and nails because the fungus uses keratin as a nutrient source. Fluconazole and amphotericin are antifungal agents most commonly used to treat dermatophytoses and acts on cell membrane ergosterol. Despite the clinical importance of T rubrum, the mechanisms underlying the fungal-host relationship have not yet been clarified. Tandem repeats (TRs) are short DNA sequences that are involved in a variety of adaptive functions, including the process of fungal infection. It is known that the larger the number of TRs in the genome, the greater the capacity of cell-cell junction and surface adhesion, especially when these repeats are present in regions encoding cell surface proteins. OBJECTIVES: To identify in silico T rubrum genes containing TR patterns and to analyse the modulation of these genes in culture medium containing keratin (a model simulating skin infection) and antifungal drugs. METHODS: The Dermatophyte Tandem Repeats Database (DTRDB) and the FaaPred tool were used to identify four T rubrum genes containing TR patterns. Quantitative real-time (RT) PCR was used to evaluate the gene expression during the growth of T rubrum on keratin and in the presence of fluconazole, amphotericin B and Congo red (acts in the cell wall). RESULTS: The expression of these genes was found to be induced in culture medium containing keratin. In addition, these genes were induced in the presence of antifungal agents, especially fluconazole, indicating an adaptive response to the stress caused by this drug. CONCLUSION: The results suggest an important role of genes containing TRs in the fungal-host interaction and in the susceptibility to inhibitory compounds, indicating these sequences as new potential targets for the development of antifungal agents.


Asunto(s)
Arthrodermataceae/efectos de los fármacos , Arthrodermataceae/genética , Dermatomicosis/tratamiento farmacológico , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Secuencias Repetidas en Tándem , Antifúngicos/farmacología , Medios de Cultivo , Proteínas Fúngicas/genética , Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Queratinas/farmacología , Pruebas de Sensibilidad Microbiana , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética
2.
BMC Genomics ; 20(1): 411, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31117938

RESUMEN

BACKGROUND: Trichophyton rubrum is the main etiological agent of skin and nail infections worldwide. Because of its keratinolytic activity and anthropophilic nature, infection models based on the addition of protein substrates have been employed to assess transcriptional profiles and to elucidate aspects related to host-pathogen interactions. Chalcones are widespread compounds with pronounced activity against dermatophytes. The toxicity of trans-chalcone towards T. rubrum is not fully understood but seems to rely on diverse cellular targets. Within this context, a better understanding of the mode of action of trans-chalcone may help identify new strategies of antifungal therapy and reveal new chemotherapeutic targets. This work aimed to assess the transcriptional profile of T. rubrum grown on different protein sources (keratin or elastin) to mimic natural infection sites and exposed to trans-chalcone in order to elucidate the mechanisms underlying the antifungal activity of trans-chalcone. RESULTS: Overall, the use of different protein sources caused only slight differences in the transcriptional profile of T. rubrum. The main differences were the modulation of proteases and lipases in gene categories when T. rubrum was grown on keratin and elastin, respectively. In addition, some genes encoding heat shock proteins were up-regulated during the growth of T. rubrum on keratin. The transcriptional profile of T. rubrum exposed to trans-chalcone included four main categories: fatty acid and lipid metabolism, overall stress response, cell wall integrity pathway, and alternative energy metabolism. Consistently, T. rubrum Mapk was strongly activated during the first hours of trans-chalcone exposure. Noteworthy, trans-chalcone inhibited genes involved in keratin degradation. The results also showed effects of trans-chalcone on fatty acid synthesis and metabolic pathways involved in acetyl-CoA supply. CONCLUSION: Our results suggest that the mode of action of trans-chalcone is related to pronounced changes in fungal metabolism, including an imbalance between fatty acid synthesis and degradation that interferes with cell membrane and cell wall integrity. In addition, this compound exerts activity against important virulence factors. Taken together, trans-chalcone acts on targets related to dermatophyte physiology and the infection process.


Asunto(s)
Pared Celular/química , Chalcona/farmacología , Ácidos Grasos/metabolismo , Proteínas Fúngicas/metabolismo , Tiña/metabolismo , Trichophyton/metabolismo , Factores de Virulencia/antagonistas & inhibidores , Antifúngicos/farmacología , Pared Celular/genética , Elastina/metabolismo , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Humanos , Queratinas/metabolismo , Transducción de Señal , Tiña/tratamiento farmacológico , Tiña/microbiología , Trichophyton/efectos de los fármacos , Trichophyton/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA