RESUMEN
In studies investigating the etiology and pathophysiology of autism spectrum disorder (ASD), immune dysregulation is commonly observed, with elevated levels of inflammatory cytokines frequently found in gestational tissues. However, studies investigating the relationship between early immune dysregulation within the umbilical cord blood (CB) compartment and neurodevelopmental outcomes remains limited. In this exploratory study, we utilized data from the prospective Markers for Autism Risk in Babies - Learning Early Signs (MARBLES) study to examine cytokine levels in the plasma fraction of CB in infants later diagnosed with ASD (n = 38) compared to infants typically developing (TD) at age 3 years (n = 103), using multiplex cytokine assays. Our findings reveal altered levels of several inflammatory cytokines in children later diagnosed with ASD, including increased granulocyte colony-stimulating factor (G-CSF) and decreased interleukin-1α (IL-1α), IL-1ß, and IL-4 in CB. Furthermore, we identified several associations between behaviors and levels of cytokines, chemokines and growth factors. IL-1α, IL-17A, interferon γ-induced protein 10 (IP-10), and epidermal growth factor (EGF) were associated with worse scores on Autism Diagnostic Observation Schedule (ADOS) and the Mullen Scales of Early Learning (MSEL) assessments. In summary, our study demonstrates dysregulated levels of inflammatory cytokine mediators in the CB of children later diagnosed with ASD and that inflammatory mediators were associated with ASD severity, comorbid behaviors, and neurodevelopmental measures. These findings have important implications for the possible predictive value of early cytokine measures in neurodevelopmental outcomes and subsequent behavioral manifestations.
Asunto(s)
Trastorno del Espectro Autista , Citocinas , Sangre Fetal , Humanos , Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/inmunología , Sangre Fetal/metabolismo , Femenino , Masculino , Citocinas/sangre , Preescolar , Estudios Prospectivos , Lactante , Interleucina-1alfa/sangre , Factor Estimulante de Colonias de Granulocitos/sangre , Interleucina-1beta/sangre , Interleucina-4/sangre , Interleucina-17/sangre , Factor de Crecimiento Epidérmico/sangreRESUMEN
Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.
Asunto(s)
Encéfalo , Citocinas , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo , Placenta , Efectos Tardíos de la Exposición Prenatal , Caracteres Sexuales , Femenino , Animales , Embarazo , Masculino , Citocinas/metabolismo , Citocinas/genética , Ratones , Encéfalo/metabolismo , Encéfalo/inmunología , Encéfalo/embriología , Placenta/metabolismo , Placenta/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/inmunología , Trastornos del Neurodesarrollo/metabolismo , Poli I-C/toxicidad , Transcriptoma , Modelos Animales de Enfermedad , Feto/metabolismoRESUMEN
Lipopeptides are medicinally essential building blocks with strong hemolytic, antifungal and antibiotic potential. In the present research article, we are presenting our findings regarding the synthesis of N-alkylated lipopeptides via Ugi four-component approach, their antimicrobial potential against pathogenic (Gram-positive and Gram-negative) bacteria, as well as computational studies to investigate the compounds binding affinity and dynamic behavior with MurD antibacterial target. Molecular docking demonstrated the compounds have good binding ability with MurD enzyme. The FT94, FT95 and FT97 compounds revealed binding affinity scores of -8.585 kcal mol- 1, -7.660 kcal mol- 1 and -7.351 kcal mol- 1, respectively. Furthermore, dynamics analysis pointed the systems high structure dynamics. The docking and simulation results were validated by binding free energies, demonstrating solid intermolecular interactions and in the assay in vitro, the Minimal Inhibitory Concentration (MIC) of FT97 to Staphylococcus aureus (S. aureus) was 62.5 µg/mL. In conclusion, a moderate inhibitory response of peptoid FT97 was observed against the Gram-positive bacteria, S. aureus and B. cereus.