RESUMEN
BACKGROUND: Although environmental determinants play an important role in suicide mortality, the quantitative influence of climate change-induced heat anomalies on suicide deaths remains relatively underexamined. OBJECTIVE: The objective is to quantify the impact of climate change-induced heat anomalies on suicide deaths in Australia from 2000 to 2019. METHODS: A time series regression analysis using a generalised additive model was employed to explore the potentially non-linear relationship between temperature anomalies and suicide, incorporating structural variables such as sex, age, season and geographic region. Suicide deaths data were obtained from the Australian National Mortality Database, and gridded climate data of gridded surface temperatures were sourced from the Australian Gridded Climate Dataset. FINDINGS: Heat anomalies in the study period were between 0.02°C and 2.2°C hotter than the historical period due to climate change. Our analysis revealed that approximately 0.5% (264 suicides, 95% CI 257 to 271) of the total 50 733 suicides within the study period were attributable to climate change-induced heat anomalies. Death counts associated with heat anomalies were statistically significant (p value 0.03) among men aged 55+ years old. Seasonality was a significant factor, with increased deaths during spring and summer. The relationship between high heat anomalies and suicide deaths varied across different demographic segments. CONCLUSIONS AND IMPLICATIONS: This study highlights the measurable impact of climate change-induced heat anomalies on suicide deaths in Australia, emphasising the need for increased climate change mitigation and adaptation strategies in public health planning and suicide prevention efforts focusing on older adult men. The findings underscore the importance of considering environmental factors in addition to individual-level factors in understanding and reducing suicide mortality.
Asunto(s)
Cambio Climático , Calor , Suicidio , Humanos , Australia/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Suicidio/estadística & datos numéricos , Adulto , Anciano , Calor/efectos adversos , Análisis de Regresión , Adulto Joven , Adolescente , Estaciones del AñoRESUMEN
BACKGROUND: The acute health effects of short-term (hours to days) exposure to fine particulate matter (PM2·5) have been well documented; however, the global mortality burden attributable to this exposure has not been estimated. We aimed to estimate the global, regional, and urban mortality burden associated with short-term exposure to PM2·5 and the spatiotemporal variations in this burden from 2000 to 2019. METHODS: We combined estimated global daily PM2·5 concentrations, annual population counts, country-level mortality rates, and epidemiologically derived exposure-response functions to estimate the mortality attributable to short-term PM2·5 exposure from 2000 to 2019, in the continental regions and in 13â189 urban centres worldwide at a spatial resolution of 0·1°â×â0·1°. We tested the robustness of our mortality estimates with different theoretical minimum risk exposure levels, lag effects, and exposure-response functions. FINDINGS: Approximately 1 million (95% CI 690 000-1·3 million) premature deaths per year from 2000 to 2019 were attributable to short-term PM2·5 exposure, representing 2·08% (1·41-2·75) of total global deaths or 17 (11-22) premature deaths per 100â000 population. Annually, 0·23 million (0·15 million-0·30 million) deaths attributable to short-term PM2·5 exposure were in urban areas, constituting 22·74% of the total global deaths attributable to this cause and accounting for 2·30% (1·56-3·05) of total global deaths in urban areas. The sensitivity analyses showed that our worldwide estimates of mortality attributed to short-term PM2·5 exposure were robust. INTERPRETATION: Short-term exposure to PM2·5 contributes a substantial global mortality burden, particularly in Asia and Africa, as well as in global urban areas. Our results highlight the importance of mitigation strategies to reduce short-term exposure to air pollution and its adverse effects on human health. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.
Asunto(s)
Contaminación del Aire , Material Particulado , Humanos , Material Particulado/análisis , Australia , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Mortalidad Prematura , AsiaRESUMEN
Background: People living in Australian cities face increased mortality risks from exposure to extreme air pollution events due to bushfires and dust storms. However, the burden of mortality attributable to exceptional PM2.5 levels has not been well characterised. We assessed the burden of mortality due to PM2.5 pollution events in Australian capital cities between 2001 and 2020. Methods: For this health impact assessment, we obtained data on daily counts of deaths for all non-accidental causes and ages from the Australian National Vital Statistics Register. Daily concentrations of PM2.5 were estimated at a 5 km grid cell, using a Random Forest statistical model of data from air pollution monitoring sites combined with a range of satellite and land use-related data. We calculated the exceptional PM2.5 levels for each extreme pollution exposure day using the deviation from a seasonal and trend loess decomposition model. The burden of mortality was examined using a relative risk concentration-response function suggested in the literature. Findings: Over the 20-year study period, we estimated 1454 (95 % CI 987, 1920) deaths in the major Australian cities attributable to exceptional PM2.5 exposure levels. The mortality burden due to PM2.5 exposure on extreme pollution days was considerable. Variations were observed across Australia. Despite relatively low daily PM2.5 levels compared to global averages, all Australian cities have extreme pollution exposure days, with PM2.5 concentrations exceeding the World Health Organisation Air Quality Guideline standard for 24-h exposure. Our analysis results indicate that nearly one-third of deaths from extreme air pollution exposure can be prevented with a 5 % reduction in PM2.5 levels on days with exceptional pollution. Interpretation: Exposure to exceptional PM2.5 events was associated with an increased mortality burden in Australia's cities. Policies and coordinated action are needed to manage the health risks of extreme air pollution events due to bushfires and dust storms under climate change.
RESUMEN
OBJECTIVES: To estimate the number of deaths and the cost of deaths attributable to wood heater smoke in the Australian Capital Territory. STUDY DESIGN: Rapid health impact assessment, based on fine particulate matter (PM2.5 ) data from three outdoor air pollution monitors and published exposure-response functions for natural cause mortality attributed to PM2.5 exposure. SETTING: Australian Capital Territory (population, 2021: 454 000), 2016-2018, 2021, and 2022 (2019 and 2020 excluded because of the impact of extreme bushfires on air quality). MAIN OUTCOME MEASURES: Proportion of PM2.5 exposure attributable to wood heaters; numbers of deaths and associated cost of deaths (based on the value of statistical life: $5.3 million) attributable to wood heater smoke. RESULTS: Wood heater emissions contributed an estimated 1.16-1.73 µg/m3 to the annual mean PM2.5 concentration during the three colder years (2017, 2018, 2021), or 17-25% of annual mean exposure, and 0.72 µg/m3 (15%) or 0.89 µg/m3 (13%) during the two milder years (2016, 2022). Using the most conservative exposure-response function, the estimated annual number of deaths attributable to wood heater smoke was 17-26 during the colder three years and 11-15 deaths during the milder two years. Using the least conservative exposure-response function, an estimated 43-63 deaths per year (colder years) and 26-36 deaths per year (milder years) were attributable to wood heater smoke. The estimated annual equivalent cost of deaths was $57-136 million (most conservative exposure-response function) and $140-333 million (least conservative exposure-response function). CONCLUSIONS: The estimated annual number of deaths in the ACT attributable to wood heater PM2.5 pollution is similar to that attributed to the extreme smoke of the 2019-20 Black Summer bushfires. The number of wood heaters should be reduced by banning new installations and phasing out existing units in urban and suburban areas.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Humo/efectos adversos , Contaminantes Atmosféricos/análisis , Territorio de la Capital Australiana , Madera/efectos adversos , Madera/química , Evaluación del Impacto en la Salud , Australia/epidemiología , Contaminación del Aire/efectos adversos , Material Particulado/efectos adversos , Exposición a Riesgos Ambientales/efectos adversosRESUMEN
Introduction: Exposure to high ambient temperatures and air pollution has been shown to increase the risk of spontaneous preterm birth (sPTB). Less clear are the effects of cold and the joint effects of air pollution and temperature. Methods: Using a Cox proportional hazard regression model, we assessed the risk of independent and combined short-term exposure to ambient daily mean temperature and PM2.5 associated with sPTB in the last week before delivery on overall sPTB (weeks 23-36) and three subtypes: extremely sPTB, very sPTB, and moderate-to-late sPTB for a birth cohort of 1,318,570 births from Australia (Jan 2001-Dec 2019), while controlling for chronic exposure (i.e., throughout pregnancy except the last week before delivery) to PM2.5 and temperature. The temperature was modeled as a natural cubic spline, PM2.5 as a linear term, and the interaction effect was estimated using a multiplicative term. For short-term exposure to temperature hazard ratios reported are relative to the median temperature (18.1°C). Results: Hazard ratios at low temperature [5th percentile(11.5°C)] were 0.95 (95% CI: 0.90, 1.00), 1.08 (95% CI: 0.84, 1.4), 0.87 (95% CI: 0.71, 1.06), and 1.00 (95% CI: 0.94, 1.06) and greater for high temperature [95th percentile (24.5°C)]: 1.22 (95% CI: 1.16, 1.28), 1.27 (95% CI: 1.03, 1.57), and 1.26 (95% CI: 1.05, 1.5) and 1.05 (1.00, 1.11), respectively, for overall, extremely, very, and moderate-to-late sPTBs. While chronic exposure to PM2.5 had adverse effects on sPTB, short-term exposure to PM2.5 appeared to have a negative association with all types of sPTB, with hazard ratios ranging from 0.86 (95th CI: 0.80, 0.94) to 0.98 (95th CI: 0.97, 1.00) per 5 µg/m3 increase in PM2.5. Discussion: The risk of sPTB was found to increase following acute exposure to hot and cold ambient temperatures. Earlier sPTB subtypes seemed to be the most vulnerable. This study adds to the evidence that short-term exposure to ambient cold and heat and longer term gestational exposure to ambient PM2.5 are associated with an elevated risk of sPTB.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nacimiento Prematuro , Embarazo , Femenino , Recién Nacido , Humanos , Contaminantes Atmosféricos/análisis , Temperatura , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/etiología , Nueva Gales del Sur/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Australia , Material Particulado/efectos adversos , Material Particulado/análisisRESUMEN
OBJECTIVES: To assess the population health impact of high temperatures on workplace health and safety by estimating the burden of heat-attributable occupational injury in Australia. STUDY DESIGN, SETTING: Retrospective observational study; estimation of burden of occupational injury in Australia attributable to high temperatures during 2014-19, based on Safe Work Australia (work-related traumatic injury fatalities and workers' compensation databases) and Australian Institute of Health and Welfare data (Australian Burden of Disease Study and National Hospital Morbidity databases), and a meta-analysis of climate zone-specific risk data. MAIN OUTCOME MEASURE: Burden of heat-attributable occupational injuries as disability-adjusted life years (DALYs), comprising the numbers of years of life lived with disability (YLDs) and years of life lost (YLLs), nationally, by Köppen-Geiger climate zone, and by state and territory. RESULTS: During 2014-19, an estimated 42 884 years of healthy life were lost to occupational injury, comprising 39 485 YLLs (92.1%) and 3399 YLDs (7.9%), at a rate of 0.80 DALYs per 1000 workers per year. A total of 967 occupational injury-related DALYs were attributable to heat (2.3% of occupational injury-related DALYs), comprising 890 YLLs (92%) and 77 YLDs (8%). By climate zone, the heat-attributable proportion was largest in the tropical Am (12 DALYs; 3.5%) and Aw zones (34 DALYs; 3.5%); by state and territory, the proportion was largest in New South Wales and Queensland (each 2.9%), which also included the largest numbers of heat-attributable occupational injury-related DALYs (NSW: 379 DALYs, 39% of national total; Queensland: 308 DALYs; 32%). CONCLUSION: An estimated 2.3% of the occupational injury burden in Australia is attributable to high ambient temperatures. To prevent this burden increasing with global warming, adaptive measures and industry-based policies are needed to safeguard workplace health and safety, particularly in heat-exposed industries, such as agriculture, transport, and construction.
Asunto(s)
Esperanza de Vida , Traumatismos Ocupacionales , Humanos , Australia/epidemiología , Carga Global de Enfermedades , Estudios Observacionales como Asunto , Traumatismos Ocupacionales/epidemiología , Años de Vida Ajustados por Calidad de Vida , Factores de Riesgo , TemperaturaRESUMEN
BACKGROUND: Individuals with asthma experienced severe and prolonged symptoms after the Australian 2019 to 2020 landscape fire. Many of these symptoms, such as throat irritation, occur in the upper airway. This suggests that laryngeal hypersensitivity contributes to persistent symptoms after smoke exposure. OBJECTIVE: This study examined the relationship between laryngeal hypersensitivity and symptoms, asthma control, and health impacts on individuals exposed to landscape fire smoke. METHOD: The study was a cross-sectional survey of 240 participants in asthma registries who were exposed to smoke during the 2019 to 2020 Australian fire. The survey, completed between March and May 2020, included questions about symptoms, asthma control, and health care use, as well as the Laryngeal Hypersensitivity Questionnaire. Daily concentration levels of particulate matter less than or equal to 2.5 µm in diameter were measured over the 152-day study period. RESULTS: The 49 participants with laryngeal hypersensitivity (20%) had significantly more asthma symptoms (96% vs 79%; P = .003), cough (78% vs 22%; P < .001), and throat irritation (71% vs 38%; P < .001) during the fire period compared with those without laryngeal hypersensitivity. Participants with laryngeal hypersensitivity had greater health care use (P ≤ .02), more time off work (P = .004), and a reduced capacity to participate in usual activities (P < .001) during the fire period, as well as poorer asthma control during the follow-up (P = .001). CONCLUSIONS: Laryngeal hypersensitivity is associated with persistent symptoms, reports of lower asthma control, and increased health care use in adults with asthma who were exposed to landscape fire smoke. Management of laryngeal hypersensitivity before, during, or immediately after landscape fire smoke exposure might reduce the symptom burden and health impact.
Asunto(s)
Asma , Hipersensibilidad , Laringe , Trastornos Respiratorios , Adulto , Humanos , Estudios Transversales , Australia/epidemiología , Asma/epidemiologíaRESUMEN
BACKGROUND: The 2019/2020 Australian landscape fires (bushfires) resulted in prolonged extreme air pollution; little is known about the effects on breastfeeding women and their infants. This study aimed to examine the impact of prolonged landscape fires on infant feeding methods and assess the concentration of polycyclic aromatic hydrocarbons (PAHs) and elements in breast milk samples. METHODS: From May - December 2020, women with asthma, who were feeding their infants during the fires, were recruited from an existing cohort. Data on infant feeding and maternal concern during the fires were retrospectively collected. Breast milk samples were collected from a sample of women during the fire period and compared with samples collected outside of the fire period for levels of 16 PAHs (gas chromatography coupled with mass spectrometry), and 20 elements (inductively coupled plasma-mass spectrometry). RESULTS: One-hundred-and-two women who were feeding infants completed the survey, and 77 provided 92 breast milk samples. Two women reported concern about the impact of fire events on their infant feeding method, while four reported the events influenced their decision. PAHs were detected in 34% of samples collected during, versus no samples collected outside, the fire period (cross-sectional analysis); specifically, fluoranthene (median concentration 0.015 mg/kg) and pyrene (median concentration 0.008 mg/kg) were detected. Women whose samples contained fluoranthene and pyrene were exposed to higher levels of fire-related fine particulate matter and more fire days, versus women whose samples had no detectable fluoranthene and pyrene. Calcium, potassium, magnesium, sodium, sulphur, and copper were detected in all samples. No samples contained chromium, lead, nickel, barium, or aluminium. No statistically significant difference was observed in the concentration of elements between samples collected during the fire period versus outside the fire period. CONCLUSIONS: Few women had concerns about the impact of fire events on infant feeding. Detection of fluoranthene and pyrene in breast milk samples was more likely during the 2019/2020 Australian fire period; however, levels detected were much lower than levels expected to be related to adverse health outcomes.
Asunto(s)
Asma , Hidrocarburos Policíclicos Aromáticos , Lactante , Femenino , Humanos , Leche Humana/química , Lactancia Materna , Estudios Transversales , Estudios Retrospectivos , Australia , Hidrocarburos Policíclicos Aromáticos/análisis , Pirenos/análisisRESUMEN
BACKGROUND: Bushfire smoke is a major ongoing environmental hazard in Australia. In the summer of 2019-2020 smoke from an extreme bushfire event exposed large populations to high concentrations of particulate matter (PM) pollution. In this study we aimed to estimate the effect of bushfire-related PM of less than 2.5 µm in diameter (PM2.5) on the risk of mortality in Sydney, Australia from 2010 to 2020. METHODS: We estimated concentrations of PM2.5 for three subregions of Sydney from measurements at monitoring stations using inverse-distance weighting and cross-referenced extreme days (95th percentile or above) with satellite imagery to determine if bushfire smoke was present. We then used a seasonal and trend decomposition method to estimate the Non-bushfire PM2.5 concentrations on those days. Daily PM2.5 concentrations above the Non-bushfire concentrations on bushfire smoke days were deemed to be Bushfire PM2.5. We used distributed-lag non-linear models to estimate the effect of Bushfire and Non-bushfire PM2.5 on daily counts of mortality with sub-analyses by age. These models controlled for seasonal trends in mortality as well as daily temperature, day of week and public holidays. RESULTS: Within the three subregions, between 110 and 134 days were identified as extreme bushfire smoke days within the subregions of Sydney. Bushfire-related PM2.5 ranged from 6.3 to 115.4 µg/m3. A 0 to 10 µg/m3 increase in Bushfire PM2.5 was associated with a 3.2% (95% CI 0.3, 6.2%) increase in risk of all-cause death, cumulatively, in the 3 days following exposure. These effects were present in those aged 65 years and over, while no effect was observed in people under 65 years. CONCLUSION: Bushfire PM2.5 exposure is associated with an increased risk of mortality, particularly in those over 65 years of age. This increase in risk was clearest at Bushfire PM2.5 concentrations up to 30 µg/m3 above background (Non-bushfire), with possible plateauing at higher concentrations of Bushfire PM2.5.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Anciano , Humo/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Australia , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisisRESUMEN
In the original publication [...].
RESUMEN
BACKGROUND: Little is known about the physical and mental health impact of exposure to landscape fire smoke in women with asthma. This study examined the health impacts and information-seeking behaviours of women with asthma exposed to the 2019/2020 Australian fires, including women who were pregnant. METHODS: Women with asthma were recruited from the Breathing for Life Trial in Australia. Following the landscape fire exposure period, self-reported data were collected regarding symptoms (respiratory and non-respiratory), asthma exacerbations, wellbeing, quality of life, information seeking, and landscape fire smoke exposure mitigation strategies. Participants' primary residential location and fixed site monitoring was used to geolocate and estimate exposure to landscape fire-related fine Particulate Matter (PM2.5). RESULTS: The survey was completed by 81 pregnant, 70 breastfeeding and 232 non-pregnant and non-breastfeeding women with asthma. Participants had a median daily average of 17 µg/m3 PM2.5 and 105 µg/m3 peak PM2.5 exposure over the fire period (October 2019 to February 2020). Over 80% of participants reported non-respiratory and respiratory symptoms during the fire period and 41% reported persistent symptoms. Over 82% reported asthma symptoms and exacerbations of asthma during the fire period. Half the participants sought advice from a health professional for their symptoms. Most (97%) kept windows/doors shut when inside and 94% stayed indoors to minimise exposure to landscape fire smoke. Over two in five (43%) participants reported that their capacity to participate in usual activities was reduced due to prolonged smoke exposure during the fire period. Participants reported greater anxiety during the fire period than after the fire period (mean (SD) = 53(13) versus 39 (13); p < 0.001). Two in five (38%) pregnant participants reported having concerns about the effect of fire events on their pregnancy. CONCLUSION: Prolonged landscape fire smoke exposure during the 2019/2020 Australian fire period had a significant impact on the health and wellbeing of women with asthma, including pregnant women with asthma. This was despite most women taking actions to minimise exposure to landscape fire smoke. Effective and consistent public health messaging is needed during landscape fire events to guard the health of women with asthma.
Asunto(s)
Calidad de Vida , Embarazo , Femenino , Humanos , Australia/epidemiologíaRESUMEN
Background: Acute exposure to ambient air pollution even at low concentrations has been associated with increased hospitalisation for respiratory diseases but the effects of long-term exposure are less certain. In this study, we investigated the associations between long-term exposures to PM2.5, PM2.5 absorbance and NO2 and hospitalisation for asthma, chronic obstructive pulmonary disease and pneumonia in a cohort of older men living in Perth, Western Australia, a city where the levels of air pollutants are well below the world standards. Materials and methods: The study population of 11,156 men with no prior hospitalisation for respiratory disease was drawn from the Health in Men Study (HIMS) cohort of men aged >65 years living in Perth, Western Australia between 1996-1999. PM2.5, PM2.5 absorbance (PM2.5a) and NO2 were measured across the Perth metropolitan area over three seasons in 2012. Land use regression (LUR) models were used to estimate annual concentrations of PM2.5, PM2.5 absorbance and NO2 at the residential address of each participant from inception (1996) to 2015. Hospitalisation for respiratory disease between inception and 2015 was ascertained using the Western Australian Data Linkage System. The association between exposure to air pollution with hospitalisation for respiratory disease was examined using Cox regression analysis. Results: No statistically significant associations were observed in the fully adjusted models. However, positive associations were observed with first hospitalisation for pneumonia (HR 1.08, 95% CI: 1.01-1.16) when adjusted for age, year of enrolment, smoking status, education, BMI and physical activity. Conclusions: In this longitudinal study of older men we found no evidence of associations between increased long-term exposure to low-level air pollution with increased risk of hospitalisation for respiratory diseases in Perth, Australia. More studies on respiratory morbidity associated with exposure to low levels of air pollution are needed for more comprehensive understanding of the overall risk.
RESUMEN
Air pollution exposure may increase the demand for emergency healthcare services, particularly in South-East Asia, where the burden of air-pollution-related health impacts is high. This article aims to investigate the association between air quality and emergency hospital admissions in Singapore. Quasi-Poisson regression was applied with a distributed lag non-linear model (DLNM) to assess the short-term associations between air quality variations and all-cause, emergency admissions from a major hospital in Singapore, between 2009 and 2017. Higher concentrations of SO2, PM2.5, PM10, NO2, and CO were positively associated with an increased risk of (i) all-cause, (ii) cardiovascular-related, and (iii) respiratory-related emergency admissions over 7 days. O3 concentration increases were associated with a non-linear decrease in emergency admissions. Females experienced a higher risk of emergency admissions associated with PM2.5, PM10, and CO exposure, and a lower risk of admissions with NO2 exposure, compared to males. The older adults (≥65 years) experienced a higher risk of emergency admissions associated with SO2 and O3 exposure compared to the non-elderly group. We found significant positive associations between respiratory disease- and cardiovascular disease-related emergency hospital admissions and ambient SO2, PM2.5, PM10, NO2, and CO concentrations. Age and gender were identified as effect modifiers of all-cause admissions.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Masculino , Femenino , Humanos , Anciano , Persona de Mediana Edad , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Singapur/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/análisis , Hospitales , ChinaRESUMEN
BACKGROUND: Myocardial infarction is an important cause of cardiovascular mortality and can be precipitated by climatic factors. The temperature dependence of myocardial infarction risk has been well examined in temperate settings. Fewer studies have investigated this in the tropics where thermal amplitudes are narrower. This study investigated how ambient temperature influenced the risk of non-ST segment elevation myocardial infarction (NSTEMI), an increasingly common type of myocardial infarction, in the tropical city-state of Singapore. METHODS: All nationally reported NSTEMI cases from 2009 to 2018 were included and assessed for its short-term association with ambient temperature using conditional Poisson regression models that comprised a three-way interaction term with year, month and day of the week and adjusted for relative humidity. The Distributed Lag Non-Linear Modelling (DLNM) was used to account for the immediate and lagged effects of environmental exposures. Stratified analysis by sex and age groups was undertaken to assess potential effect modification. RESULTS: There were 60,643 reports of NSTEMI. Temperature decline (cool effect) was associated with a delayed cumulative, non-linear increase in NSTEMI risk over 10 days post exposure [Relative Risk (RRlag0-10, 10th percentile: 1.12, 95%CI: 1.02-1.24)]. Those aged 65 years and above were potentially more susceptible (RR lag0-10, 10th percentile: 1.19, 95 % CI: 1.06-1.33) to the cool effect compared to those below that age (RRlag0-10, 10th percentile: 1.00, 95 % CI: 0.85-1.18) (p-value for difference = 0.087). CONCLUSION: Short-term temperature fluctuations were independently associated with NSTEMI incidence in the tropics, with age as a potential effect modifier of this association. An increase in the frequency of climate change driven temperature events may trigger more instances of NSTEMI in tropical cosmopolitan cities.
Asunto(s)
Infarto del Miocardio , Infarto del Miocardio sin Elevación del ST , Infarto del Miocardio con Elevación del ST , Hospitales , Humanos , Infarto del Miocardio/epidemiología , Infarto del Miocardio sin Elevación del ST/epidemiología , Factores de Riesgo , TemperaturaRESUMEN
Flood events can be dramatic and traumatic. People exposed to floods are liable to suffer from a variety of adverse mental health outcomes. The adverse effects of stressors during the recovery process (secondary stressors) can sometimes be just as severe as the initial trauma. Six months after extensive flooding in rural Australia, a survey of 2530 locals was conducted focusing on their flood experiences and mental health status. This mixed methods study analysed (a) quantitative data from 521 respondents (21% of total survey respondents) who had insurance coverage and whose household was inundated, 96 (18%) of whom reported an insurance dispute or denial; and (b) qualitative data on insurance-related topics in the survey's open comments sections. The mental health outcomes were all significantly associated with the degree of flood inundation. The association was strong for probable PTSD and ongoing distress (Adjusted Odds Ratios (AORs) with 95% confidence intervals 2.67 (1.8-4.0) and 2.30 (1.6-3.3), respectively). The associations were less strong but still significant for anxiety and depression (AORs 1.79 (1.2-2.7) and 1.84 (1.2-2.9)). The secondary stressor of insurance dispute had stronger associations with ongoing distress and depression than the initial flood exposure (AORs 2.43 (1.5-3.9) and 2.34 (1.4-3.9), respectively). Insurance was frequently mentioned in the open comment sections of the survey. Most comments (78% of comments from all survey respondents) were negative, with common adverse trends including dispute/denial, large premium increases after a claim, inconsistencies in companies' responses and delayed assessments preventing timely remediation.
Asunto(s)
Inundaciones , Trastornos por Estrés Postraumático , Ansiedad , Depresión , Humanos , Cobertura del Seguro , Trastornos por Estrés Postraumático/psicologíaRESUMEN
Wildfires are increasing and cause health effects. The immediate and ongoing health impacts of prolonged wildfire smoke exposure in severe asthma are unknown. This longitudinal study examined the experiences and health impacts of prolonged wildfire (bushfire) smoke exposure in adults with severe asthma during the 2019/2020 Australian bushfire period. Participants from Eastern/Southern Australia who had previously enrolled in an asthma registry completed a questionnaire survey regarding symptoms, asthma attacks, quality of life and smoke exposure mitigation during the bushfires and in the months following exposure. Daily individualized exposure to bushfire particulate matter (PM2.5) was estimated by geolocation and validated modelling. Respondents (n = 240) had a median age of 63 years, 60% were female and 92% had severe asthma. They experienced prolonged intense PM2.5 exposure (mean PM2.5 32.5 µg/m3 on 55 bushfire days). Most (83%) of the participants experienced symptoms during the bushfire period, including: breathlessness (57%); wheeze/whistling chest (53%); and cough (50%). A total of 44% required oral corticosteroid treatment for an asthma attack and 65% reported reduced capacity to participate in usual activities. About half of the participants received information/advice regarding asthma management (45%) and smoke exposure minimization strategies (52%). Most of the participants stayed indoors (88%) and kept the windows/doors shut when inside (93%), but this did not clearly mitigate the symptoms. Following the bushfire period, 65% of the participants reported persistent asthma symptoms. Monoclonal antibody use for asthma was associated with a reduced risk of persistent symptoms. Intense and prolonged PM2.5 exposure during the 2019/2020 bushfires was associated with acute and persistent symptoms among people with severe asthma. There are opportunities to improve the exposure mitigation strategies and communicate these to people with severe asthma.
Asunto(s)
Contaminantes Atmosféricos , Asma , Incendios , Adulto , Contaminantes Atmosféricos/análisis , Asma/epidemiología , Australia/epidemiología , Exposición a Riesgos Ambientales , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Material Particulado/análisis , Calidad de Vida , Humo/efectos adversos , Humo/análisisRESUMEN
The health impacts of climate are widely recognised, and extensive modelling is available on predicted changes to climate globally. The impact of these changes may affect populations differently depending on a range of factors, including geography, socioeconomics and culture. This study reviewed current evidence on the health risks of climate change for Australian Aboriginal populations and linked Aboriginal demographic data to historical and projected climate data to describe the distribution of climate-related exposures in Aboriginal compared to non-Aboriginal populations in New South Wales (NSW), Australia. The study showed Aboriginal populations were disproportionately exposed to a range of climate extremes in heat, rainfall and drought, and this disproportionate exposure was predicted to increase with climate change over the coming decades. Aboriginal people currently experience higher rates of climate-sensitive health conditions and socioeconomic disadvantages, which will impact their capacity to adapt to climate change. Climate change may also adversely affect cultural practices. These factors will likely impact the health and well-being of Aboriginal people in NSW and inhibit measures to close the gap in health between Aboriginal and non-Aboriginal populations. Climate change, health and equity need to be key considerations in all policies at all levels of government. Effective Aboriginal community engagement is urgently needed to develop and implement climate adaptation responses to improve health and social service preparedness and secure environmental health infrastructure such as drinking water supplies and suitably managed social housing. Further Aboriginal-led research is required to identify the cultural impacts of climate change on health, including adaptive responses based on Aboriginal knowledges.
Asunto(s)
Cambio Climático , Nativos de Hawái y Otras Islas del Pacífico , Australia , Humanos , Pueblos Indígenas , Nueva Gales del Sur/epidemiologíaRESUMEN
Objective: This study reports the mortality burden due to PM2.5 exposure among adults (age >25) living in Hanoi in 2017. Methods: We applied a health impact assessment methodology with the global exposure mortality model and a PM2.5 map with 3 × 3 km resolution derived from multiple data sources. Results: The annual average PM2.5 concentration for each grid ranged from 22.1 to 37.2 µg/m³. The district average concentration values ranged from 26.9 to 37.2 µg/m³, which means that none of the 30 districts had annual average values below the Vietnam Ambient National Standard of 25 µg/m3. Using the Vietnam Ambient National Standard as the reference standard, we estimated that 2,696 deaths (95% CI: 2,225 to 3,158) per year were attributable to exposure to elevated PM2.5 concentrations in Hanoi. Using the Interim Target 4 value of 10 µg/m3 as the reference standard, the number of excess deaths attributable to elevated PM2.5 exposure was 4,760 (95% CI: 3,958-5,534). Conclusion: A significant proportion of deaths in Hanoi could be avoided by reducing air pollution concentrations to a level consistent with the Vietnam Ambient National Standard.
Asunto(s)
Contaminación del Aire , Material Particulado , Adulto , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Evaluación del Impacto en la Salud , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , VietnamRESUMEN
BACKGROUND: Exposure to high ambient temperatures has been shown to increase the risk of spontaneous preterm birth. Determining which maternal factors increase or decrease this risk will inform climate adaptation strategies. OBJECTIVES: This study aims to assess the risk of spontaneous preterm birth associated with exposure to ambient temperature and differences in this relationship between mothers with different health and demographic characteristics. METHODS: We used quasi-Poisson distributed lag non-linear models to estimate the effect of high temperature-measured as the 95th percentile of daily minimum, mean and maximum compared with the median-on risk of spontaneous preterm birth (23-36 weeks of gestation) in pregnant women in New South Wales, Australia. We estimated the cumulative lagged effects of daily temperature and analyses on population subgroups to assess increased or decreased vulnerability to this effect. RESULTS: Pregnant women (n = 916,678) exposed at the 95th percentile of daily mean temperatures (25ºC) had an increased risk of preterm birth (relative risk 1.14, 95% confidence interval 1.07, 1.21) compared with the median daily mean temperature (17â). Similar effect sizes were seen for the 95th percentile of minimum and maximum daily temperatures compared with the median. This risk was slightly higher among women with diabetes, hypertension, chronic illness and women who smoked during pregnancy. CONCLUSIONS: Higher temperatures increase the risk of preterm birth and women with pre-existing health conditions and who smoke during pregnancy are potentially more vulnerable to these effects.
Asunto(s)
Nacimiento Prematuro , Australia/epidemiología , Femenino , Calor , Humanos , Recién Nacido , Nueva Gales del Sur/epidemiología , Embarazo , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/etiología , TemperaturaRESUMEN
The MJA-Lancet Countdown on health and climate change in Australia was established in 2017, and produced its first national assessment in 2018, its first annual update in 2019, and its second annual update in 2020. It examines indicators across five broad domains: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. Our special report in 2020 focused on the unprecedented and catastrophic 2019-20 Australian bushfire season, highlighting indicators that explore the relationships between health, climate change and bushfires. For 2021, we return to reporting on the full suite of indicators across each of the five domains and have added some new indicators. We find that Australians are increasingly exposed to and vulnerable to excess heat and that this is already limiting our way of life, increasing the risk of heat stress during outdoor sports, and decreasing work productivity across a range of sectors. Other weather extremes are also on the rise, resulting in escalating social, economic and health impacts. Climate change disproportionately threatens Indigenous Australians' wellbeing in multiple and complex ways. In response to these threats, we find positive action at the individual, local, state and territory levels, with growing uptake of rooftop solar and electric vehicles, and the beginnings of appropriate adaptation planning. However, this is severely undermined by national policies and actions that are contrary and increasingly place Australia out on a limb. Australia has responded well to the COVID-19 public health crisis (while still emerging from the bushfire crisis that preceded it) and it now needs to respond to and prepare for the health crises resulting from climate change.