Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 641: 18-26, 2023 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-36516585

RESUMEN

Various studies have suggested the presence of triacylglycerol in cyanobacteria, but no convincing evidence exists. We purified a substance co-migrating with triacylglycerol in thin-layer chromatography and determined its structure using mass spectrometry, gas chromatography, and 1H and 13C NMR. The major components were palmitoyl and stearoyl plastoquinols (acyl plastoquinol). Acyl plastoquinol has never been described before, although acyloxy derivative of plastoquione has been described as plastoquinone B. The level of acyl plastoquinol was 0.4% of the total lipids. We still do not have clear evidence for the presence of triacylglycerol. If present, the maximum triacylglycerol level must be at most 10% of acyl plastoquinol. The Synechocystis Slr2103 protein was suggested to synthesize triacylglycerol, but the product could be acyl plastoquinol. The possible roles of this novel compound in photosynthesis should be a new focus of research.


Asunto(s)
Plastoquinona , Synechocystis , Triglicéridos/metabolismo , Plastoquinona/metabolismo , Cromatografía en Capa Delgada , Synechocystis/metabolismo
2.
Plant Methods ; 18(1): 99, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933383

RESUMEN

BACKGROUND: Quantification of gene expression such as RNA-Seq is a popular approach to study various biological phenomena. Despite the development of RNA-Seq library preparation methods and sequencing platforms in the last decade, RNA extraction remains the most laborious and costly step in RNA-Seq of tissue samples of various organisms. Thus, it is still difficult to examine gene expression in thousands of samples. RESULTS: Here, we developed Direct-RT buffer in which homogenization of tissue samples and direct-lysate reverse transcription can be conducted without RNA purification. The DTT concentration in Direct-RT buffer prevented RNA degradation but not RT in the lysates of several plant tissues, yeast, and zebrafish larvae. Direct reverse transcription on these lysates in Direct-RT buffer produced comparable amounts of cDNA to those synthesized from purified RNA. To maximize the advantage of the Direct-RT buffer, we integrated Direct-RT and targeted RNA-Seq to develop a cost-effective, high-throughput quantification method for the expressions of hundreds of genes: DeLTa-Seq (Direct-Lysate reverse transcription and Targeted RNA-Seq). The DeLTa-Seq method could drastically improve the efficiency and accuracy of gene expression analysis. DeLTa-Seq analysis of 1056 samples revealed the temperature-dependent effects of jasmonic acid and salicylic acid in Arabidopsis thaliana. CONCLUSIONS: The DeLTa-Seq method can realize large-scale studies using thousands of animal, plant, and microorganism samples, such as chemical screening, field experiments, and studies focusing on individual variability. In addition, Direct-RT is also beneficial for gene expression analysis in small tissues from which it is difficult to purify enough RNA for the experiments.

3.
Sci Technol Adv Mater ; 22(1): 864-874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658670

RESUMEN

The conversion of carbon dioxide into valuable chemicals is an effective strategy for combating augmented concentrations of carbon dioxide in the environment. Microalgae photosynthetically produce valuable chemicals that are used as biofuels, sources for industrial materials, medicinal leads, and food additives. Thus, improvements in microalgal technology via genetic engineering may prove to be promising for the tailored production of novel metabolites. For the transformation of microalgae, nucleic acids such as plasmid DNA (pDNA) are delivered into the cells using physical and mechanical techniques, such as electroporation, bombardment with DNA-coated microprojectiles, and vortexing with glass beads. However, owing to the electrostatic repulsion between negatively charged cell walls and nucleic acids, the delivery of nucleic acids into the microalgal cells is challenging. To solve this issue, in this study, we investigated microalgal transformation via electroporation using polyplexes with linear polyethyleneimine (LPEI) and pDNA. However, the high toxicity of LPEI decreased the transformation efficiency in Chlamydomonas reinhardtii cells. We revealed that the toxicity of LPEI was due to oxidative stress resulting from the cellular uptake of LPEI. To suppress the toxicity of LPEI, an antioxidant, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was covalently conjugated with LPEI; the conjugate was named as TEMPO-LPEI. Interestingly, with a cellular uptake tendency similar to that of LPEI, TEMPO-LPEI dramatically decreased oxidative stress and cytotoxicity. Electroporation using polyplexes of TEMPO-LPEI and pDNA enhanced the transformation efficiency, compared to those treated with bare pDNA and polyplexes of LPEI/pDNA. This result indicates that polycations conjugated with antioxidants could be useful in facilitating microalgal transformation.

4.
Microbiol Resour Announc ; 9(24)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32527773

RESUMEN

Two laboratory strains of the red alga Cyanidioschyzon merolae 10D were resequenced. We found some strain differences in the nuclear and chloroplast genomes. We also identified corrections of the mitochondrial genome sequence.

5.
Plant Cell Physiol ; 61(5): 869-881, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32044983

RESUMEN

The chromatophores found in the cells of photosynthetic Paulinella species, once believed to be endosymbiotic cyanobacteria, are photosynthetic organelles that are distinct from chloroplasts. The chromatophore genome is similar to the genomes of α-cyanobacteria and encodes about 1,000 genes. Therefore, the chromatophore is an intriguing model of organelle formation. In this study, we analyzed the lipids of Paulinella micropora MYN1 to verify that this organism is a composite of cyanobacterial descendants and a heterotrophic protist. We detected glycolipids and phospholipids, as well as a betaine lipid diacylglyceryl-3-O-carboxyhydroxymethylcholine, previously detected in many marine algae. Cholesterol was the only sterol component detected, suggesting that the host cell is similar to animal cells. The glycolipids, presumably present in the chromatophores, contained mainly C16 fatty acids, whereas other classes of lipids, presumably present in the other compartments, were abundant in C20 and C22 polyunsaturated fatty acids. This suggests that chromatophores are metabolically distinct from the rest of the cell. Metabolic studies using isotopically labeled substrates showed that different fatty acids are synthesized in the chromatophore and the cytosol, which is consistent with the presence of both type I and type II fatty acid synthases, supposedly present in the cytosol and the chromatophore, respectively. Nevertheless, rapid labeling of the fatty acids in triacylglycerol and phosphatidylcholine by photosynthetically fixed carbon suggested that the chromatophores efficiently provide metabolites to the host. The metabolic and ultrastructural evidence suggests that chromatophores are tightly integrated into the whole cellular metabolism.


Asunto(s)
Cromatóforos/metabolismo , Cianobacterias/metabolismo , Metabolismo de los Lípidos , Lípidos/biosíntesis , Vías Biosintéticas , Cromatóforos/ultraestructura , Cianobacterias/ultraestructura , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Marcaje Isotópico , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA