Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585921

RESUMEN

Tympanal organs as "insect ears" have evolved repeatedly. Dinidorid stinkbugs were reported to possess a conspicuous tympanal organ on female's hindlegs. Here we report an unexpected discovery that the stinkbug's "tympanal organ" is actually a novel symbiotic organ. The stinkbug's "tympanum" is not membranous but a porous cuticle, where each pore connects to glandular secretory cells. In reproductive females, the hindleg organ is covered with fungal hyphae growing out of the pores. Upon oviposition, the females skillfully transfer the fungi from the organ to the eggs. The eggs are quickly covered with hyphae and physically protected against wasp parasitism. The fungi are mostly benign Cordycipitaceae entomopathogens and show considerable diversity among insect individuals and populations, indicating environmental acquisition of specific fungal associates. These results uncover a novel external fungal symbiosis in which host's elaborate morphological, physiological and behavioral specializations underpin the selective recruitment of benign entomopathogens for a defensive purpose.

2.
Proc Natl Acad Sci U S A ; 120(40): e2304879120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37769258

RESUMEN

Many insects are dependent on microbial mutualists, which are often harbored in specialized symbiotic organs. Upon metamorphosis, insect organs are drastically reorganized. What mechanism regulates the remodeling of the symbiotic organ upon metamorphosis? How does it affect the microbial symbiont therein? Here, we addressed these fundamental issues of symbiosis by experimentally manipulating insect metamorphosis. The stinkbug Plautia stali possesses a midgut symbiotic organ wherein an essential bacterial symbiont resides. By RNAi of master regulator genes for metamorphosis, Kr-h1 over nymphal traits and E93 over adult traits, we generated precocious adults and supernumerary nymphs of P. stali, thereby disentangling the effects of metamorphosis, growth level, developmental stage, and other factors on the symbiotic system. Upon metamorphosis, the symbiotic organ of P. stali was transformed from nymph type to adult type. The supernumerary nymphs and the precocious adults, respectively, developed nymph-type and adult-type symbiotic organs not only morphologically but also transcriptomically, uncovering that metamorphic remodeling of the symbiotic organ is under the control of the MEKRE93 pathway. Transcriptomic, cytological, and biochemical analyses unveiled that the structural and transcriptomic remodeling of the symbiotic organ toward adult emergence underpins its functional extension to food digestion in addition to the original role of symbiont retention for essential nutrient production. Notably, we found that the symbiotic bacteria in the adult-type symbiotic organ up-regulated genes for production of sulfur-containing essential amino acids, methionine and cysteine, that are rich in eggs and sperm, uncovering adult-specific symbiont functioning for host reproduction and highlighting intricate host-symbiont interactions associated with insect metamorphosis.


Asunto(s)
Heterópteros , Simbiosis , Masculino , Animales , Simbiosis/fisiología , Semen , Sistema Digestivo/microbiología , Insectos , Heterópteros/fisiología , Bacterias/genética , Metamorfosis Biológica
3.
Microbiol Resour Announc ; 12(9): e0035323, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37623315

RESUMEN

The genomes of obligate bacterial co-symbionts of the green rice leafhopper Nephotettix cincticeps, which is notorious as an agricultural pest, were determined. The streamlined genomes of "Candidatus Sulcia muelleri" and "Candidatus Nasuia deltocephalinicola" exhibited complementary metabolic pathways for synthesizing essential nutrients that contribute to host adaptation.

4.
Cell Rep ; 42(8): 112917, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37537843

RESUMEN

A previously undescribed mechanism underlying butterfly wing coloration patterns was discovered in two distantly related butterfly species, Siproeta stelenes and Philaethria diatonica. These butterflies have bright green wings, but the color pattern is not derived from solid pigments or nanostructures of the scales or from the color of the cuticular membrane but rather from a liquid retained in the wing membrane. Wing structure differs between the green and non-green areas. In the non-green region, the upper and lower cuticular membranes are attached to each other, whereas in the green region, we observed a space of 5-10 µm where green liquid is held and living cells are present. A pigment analysis and tracer experiment revealed that the color of the liquid is derived from hemolymph components, bilin and carotenoid pigments. This discovery broadens our understanding of the diverse ways in which butterfly wings obtain their coloration and patterns.


Asunto(s)
Mariposas Diurnas , Nanoestructuras , Animales , Pigmentación , Alas de Animales , Membranas
6.
mBio ; 14(2): e0052223, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37017516

RESUMEN

Microbial mutualists are pivotal for insect adaptation, which often entails the evolution of elaborate organs for symbiosis. Addressing what mechanisms underpin the development of such organs is of evolutionary interest. Here, we investigated the stinkbug Plautia stali, whose posterior midgut is transformed into a specialized symbiotic organ. Despite being a simple tube in newborns, it developed numerous crypts in four rows, whose inner cavity hosts a specific bacterial symbiont, during the 1st to 2nd nymphal instar stages. Visualization of dividing cells revealed that active cell proliferation was coincident with the crypt formation, although spatial patterns of the proliferating cells did not reflect the crypt arrangement. Visualization of visceral muscles in the midgut, consisting of circular muscles and longitudinal muscles, uncovered that, strikingly, circular muscles exhibited a characteristic arrangement running between the crypts specifically in the symbiotic organ. Even in the early 1st instar stage, when no crypts were seen, two rows of epithelial areas delineated by bifurcated circular muscles were identified. In the 2nd instar stage, crossing muscle fibers appeared and connected the adjacent circular muscles, whereby the midgut epithelium was divided into four rows of crypt-to-be areas. The crypt formation proceeded even in aposymbiotic nymphs, revealing the autonomous nature of the crypt development. We propose a mechanistic model of crypt formation wherein the spatial arrangement of muscle fibers and the proliferation of epithelial cells underpin the formation of crypts as midgut evaginations. IMPORTANCE Diverse organisms are associated with microbial mutualists, in which specialized host organs often develop for retaining the microbial partners. In light of the origin of evolutionary novelties, it is important to understand what mechanisms underpin the elaborate morphogenesis of such symbiotic organs, which must have been shaped through interactions with the microbial symbionts. Using the stinkbug Plautia stali as a model, we demonstrated that visceral muscular patterning and proliferation of intestinal epithelial cells during the early nymphal stages are involved in the formation of numerous symbiont-harboring crypts arranged in four rows in the posterior midgut to constitute the symbiotic organ. Strikingly, the crypt formation occurred normally even in symbiont-free nymphs, revealing that the crypt development proceeds autonomously. These findings suggest that the crypt formation is deeply implemented into the normal development of P. stali, which must reflect the considerably ancient evolutionary origin of the midgut symbiotic organ in stinkbugs.


Asunto(s)
Heterópteros , Simbiosis , Recién Nacido , Animales , Humanos , Simbiosis/fisiología , Intestinos/microbiología , Bacterias , Insectos , Heterópteros/microbiología , Heterópteros/fisiología
7.
Front Microbiol ; 14: 1336919, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38318130

RESUMEN

Insect-microbe endosymbiotic associations are omnipresent in nature, wherein the symbiotic microbes often play pivotal biological roles for their host insects. In particular, insects utilizing nutritionally imbalanced food sources are dependent on specific microbial symbionts to compensate for the nutritional deficiency via provisioning of B vitamins in blood-feeding insects, such as tsetse flies, lice, and bedbugs. Bat flies of the family Nycteribiidae (Diptera) are blood-sucking ectoparasites of bats and shown to be associated with co-speciating bacterial endosymbiont "Candidatus Aschnera chinzeii," although functional aspects of the microbial symbiosis have been totally unknown. In this study, we report the first complete genome sequence of Aschnera from the bristled bat fly Penicillidia jenynsii. The Aschnera genome consisted of a 748,020 bp circular chromosome and a 18,747 bp circular plasmid. The chromosome encoded 603 protein coding genes (including 3 pseudogenes), 33 transfer RNAs, and 1 copy of 16S/23S/5S ribosomal RNA operon. The plasmid contained 10 protein coding genes, whose biological function was elusive. The genome size, 0.77 Mbp, was drastically reduced in comparison with 4-6 Mbp genomes of free-living γ-proteobacteria. Accordingly, the Aschnera genome was devoid of many important functional genes, such as synthetic pathway genes for purines, pyrimidines, and essential amino acids. On the other hand, the Aschnera genome retained complete or near-complete synthetic pathway genes for biotin (vitamin B7), tetrahydrofolate (vitamin B9), riboflavin (vitamin B2), and pyridoxal 5'-phosphate (vitamin B6), suggesting that Aschnera provides these vitamins and cofactors that are deficient in the blood meal of the host bat fly. Similar retention patterns of the synthetic pathway genes for vitamins and cofactors were also observed in the endosymbiont genomes of other blood-sucking insects, such as Riesia of human lice, Arsenophonus of louse flies, and Wigglesworthia of tsetse flies, which may be either due to convergent evolution in the blood-sucking host insects or reflecting the genomic architecture of Arsenophonus-allied bacteria.

8.
Front Physiol ; 13: 1028409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246139

RESUMEN

Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly. Genomic information of these bacterial symbionts suggests that their primary role is to supply essential amino acids, but empirical evidence has been virtually limited to the intracellular symbiosis between aphids and Buchnera. Here we investigated the amino acid complementation by the extracellular symbiotic bacterium Ishikawaella harbored in the midgut symbiotic organ of the stinkbug Megacopta punctatissima. We evaluated amino acid compositions of the phloem sap of plants on which the insect feeds, as well as those of its hemolymph, whole body hydrolysate, and excreta. The results highlighted that the essential amino acids in the diet are apparently insufficient for the stinkbug development. Experimental symbiont removal caused severe shortfalls of some essential amino acids, including branched-chain and aromatic amino acids. In vitro culturing of the isolated symbiotic organ demonstrated that hemolymph-circulating metabolites, glutamine and trehalose, efficiently fuel the production of essential amino acids. Branched-chain amino acids and aromatic amino acids are the ones preferentially synthesized despite the symbiont's synthetic capability of all essential amino acids. These results indicate that the symbiont-mediated amino acid compensation is quantitatively optimized in the stinkbug-Ishikawaella gut symbiotic association as in the aphid-Buchnera intracellular symbiotic association. The convergence of symbiont functions across distinct nutritional symbiotic systems provides insight into how host-symbiont interactions have been shaped over evolutionary time.

9.
Sci Rep ; 12(1): 16503, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192417

RESUMEN

Antimicrobial peptides (AMPs) play crucial roles in the innate immunity of diverse organisms, which exhibit remarkable diversity in size, structural property and antimicrobial spectrum. Here, we describe a new AMP, named Pentatomicin, from the stinkbug Plautia stali (Hemiptera: Pentatomidae). Orthologous nucleotide sequences of Pentatomicin were present in stinkbugs and beetles but not in other insect groups. Notably, orthologous sequences were also detected from a horseshoe crab, cyanobacteria and proteobacteria, suggesting the possibility of inter-domain horizontal gene transfers of Pentatomicin and allied protein genes. The recombinant protein of Pentatomicin was effective against an array of Gram-positive bacteria but not against Gram-negative bacteria. Upon septic shock, the expression of Pentatomicin drastically increased in a manner similar to other AMPs. On the other hand, unlike other AMPs, mock and saline injections increased the expression of Pentatomicin. RNAi-mediated downregulation of Imd pathway genes (Imd and Relish) and Toll pathway genes (MyD88 and Dorsal) revealed that the expression of Pentatomicin is under the control of Toll pathway. Being consistent with in vitro effectiveness of the recombinant protein, adult insects injected with dsRNA of Pentatomicin exhibited higher vulnerability to Gram-positive Staphylococcus aureus than to Gram-negative Escherichia coli. We discovered high levels of Pentatomicin expression in eggs, which is atypical of other AMPs and suggestive of its biological functioning in eggs. Contrary to the expectation, however, RNAi-mediated downregulation of Pentatomicin did not affect normal embryonic development of P. stali. Moreover, the downregulation of Pentatomicin in eggs did not affect vertical symbiont transmission to the offspring even under heavily contaminated conditions, which refuted our expectation that the antimicrobial activity of Pentatomicin may contribute to egg surface-mediated symbiont transmission by suppressing microbial contaminants.


Asunto(s)
Péptidos Antimicrobianos , Heterópteros , Animales , Heterópteros/fisiología , Factor 88 de Diferenciación Mieloide , Proteínas Recombinantes
10.
Nat Microbiol ; 7(8): 1141-1150, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35927448

RESUMEN

Microorganisms often live in symbiosis with their hosts, and some are considered mutualists, where all species involved benefit from the interaction. How free-living microorganisms have evolved to become mutualists is unclear. Here we report an experimental system in which non-symbiotic Escherichia coli evolves into an insect mutualist. The stinkbug Plautia stali is typically associated with its essential gut symbiont, Pantoea sp., which colonizes a specialized symbiotic organ. When sterilized newborn nymphs were infected with E. coli rather than Pantoea sp., only a few insects survived, in which E. coli exhibited specific localization to the symbiotic organ and vertical transmission to the offspring. Through transgenerational maintenance with P. stali, several hypermutating E. coli lines independently evolved to support the host's high adult emergence and improved body colour; these were called 'mutualistic' E. coli. These mutants exhibited slower bacterial growth, smaller size, loss of flagellar motility and lack of an extracellular matrix. Transcriptomic and genomic analyses of 'mutualistic' E. coli lines revealed independent mutations that disrupted the carbon catabolite repression global transcriptional regulator system. Each mutation reproduced the mutualistic phenotypes when introduced into wild-type E. coli, confirming that single carbon catabolite repression mutations can make E. coli an insect mutualist. These findings provide an experimental system for future work on host-microbe symbioses and may explain why microbial mutualisms are omnipresent in nature.


Asunto(s)
Heterópteros , Simbiosis , Animales , Escherichia coli/genética , Heterópteros/microbiología , Insectos , Mutación , Simbiosis/genética
11.
Front Microbiol ; 13: 962252, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003934

RESUMEN

Insects exclusively feeding on vertebrate blood are usually dependent on symbiotic bacteria for provisioning of B vitamins. Among them, sucking lice are prominent in that their symbiotic bacteria as well as their symbiotic organs exhibit striking diversity. Here we investigated the bacterial diversity associated with the boar louse Haematopinus apri in comparison with the hog louse Haematopinus suis. Amplicon sequencing analysis identified the primary endosymbiont predominantly detected from all populations of H. apri with some minor secondary bacterial associates. Sequencing and phylogenetic analysis of bacterial 16S rRNA gene confirmed that the endosymbionts of the boar louse H. apri, the hog louse H. suis and the cattle louse Haematopinus eurysternus form a distinct clade in the Gammaproteobacteria. The endosymbiont clade of Haematopinus spp. was phylogenetically distinct from the primary endosymbionts of other louse lineages. Fluorescence in situ hybridization visualized the endosymbiont localization within midgut epithelium, ovarial ampulla and posterior oocyte of H. apri, which were substantially the same as the endosymbiont localization previously described in H. suis and H. eurysternus. Mitochondrial haplotype analysis revealed that, although the domestic pig was derived from the wild boar over the past 8,000 years of human history, the populations of H. apri constituted a distinct sister clade to the populations of H. suis. Based on these results, we discussed possible evolutionary trajectories of the boar louse, the hog louse and their endosymbionts in the context of swine domestication. We proposed 'Candidatus Haematopinicola symbiotica' for the distinct clade of the endosymbionts of Haematopinus spp.

12.
Sci Rep ; 12(1): 7782, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546182

RESUMEN

Diverse insects are obligatorily associated with microbial symbionts, wherein the host often develops special symbiotic organs and vertically transmits the symbiont to the next generation. What molecular factors underpin the host-symbiont relationship is of great interest but poorly understood. Here we report a novel protein preferentially produced in a female-specific symbiotic organ of the stinkbug Plautia stali, whose posterior midgut develops numerous crypts to host a Pantoea-allied bacterial mutualist. In adult females, several posteriormost crypts are conspicuously enlarged, presumably specialized for vertical symbiont transmission. We detected conspicuous protein bands specific to the female's swollen crypts by gel electrophoresis, and identified them as representing a novel mucin-like glycoprotein. Histological inspections confirmed that the mucin protein is localized to the female's swollen crypts, coexisting with a substantial population of the symbiotic bacteria, and excreted from the swollen crypts to the midgut main tract together with the symbiotic bacteria. Using RNA interference, we successfully suppressed production of the mucin protein in adult females of P. stali. However, although the mucin protein was depleted, the symbiont population persisted in the swollen crypts, and vertical symbiont transmission to the next generation occurred. Possible biological roles and evolutionary trajectory of the symbiosis-related mucin protein are discussed.


Asunto(s)
Heterópteros , Simbiosis , Animales , Bacterias/genética , Femenino , Heterópteros/genética , Heterópteros/microbiología , Mucinas/genética , Filogenia , ARN Ribosómico 16S/genética
13.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217609

RESUMEN

Insects comprise over half of the described species, and the acquisition of metamorphosis must have contributed to their diversity and prosperity. The order Odonata (dragonflies and damselflies) is among the most-ancestral insects with drastic morphological changes upon metamorphosis, in which understanding of the molecular mechanisms will provide insight into the evolution of incomplete and complete metamorphosis in insects. In order to identify metamorphosis-related genes in Odonata, we performed comprehensive RNA-sequencing of the blue-tailed damselfly Ischnura senegalensis at different developmental stages. Comparative RNA-sequencing analyses between nymphs and adults identified eight nymph-specific and seven adult-specific transcripts. RNA interference (RNAi) of these candidate genes demonstrated that three transcription factors, Krüppel homolog 1 (Kr-h1), broad, and E93 play important roles in metamorphosis of both I. senegalensis and a phylogenetically distant dragonfly, Pseudothemis zonataE93 is essential for adult morphogenesis, and RNAi of Kr-h1 induced precocious metamorphosis in epidermis via up-regulation of E93 Precocious metamorphosis was also induced by RNAi of the juvenile hormone receptor Methoprene-tolerant (Met), confirming that the regulation of metamorphosis by the MEKRE93 (Met-Kr-h1-E93) pathway is conserved across diverse insects including the basal insect lineage Odonata. Notably, RNAi of broad produced unique grayish pigmentation on the nymphal abdominal epidermis. Survey of downstream genes for Kr-h1, broad, and E93 uncovered that unlike other insects, broad regulates a substantial number of nymph-specific and adult-specific genes independently of Kr-h1 and E93 These findings highlight the importance of functional changes and rewiring of the transcription factors Kr-h1, broad, and E93 in the evolution of insect metamorphosis.


Asunto(s)
Evolución Biológica , Metamorfosis Biológica/genética , Odonata/crecimiento & desarrollo , Alas de Animales , Animales , Femenino , Perfilación de la Expresión Génica , Genes de Insecto , Masculino , Odonata/genética , Interferencia de ARN
14.
mBio ; 13(1): e0369121, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073753

RESUMEN

Diverse insects host specific microbial symbionts that play important roles for their growth, survival, and reproduction. They often develop specialized symbiotic organs for harboring the microbial partners. While such intimate associations tend to be stably maintained over evolutionary time, the microbial symbionts may have been lost or replaced occasionally. How symbiont acquisitions, replacements, and losses are linked to the development of the host's symbiotic organs is an important but poorly understood aspect of microbial symbioses. Cassidine leaf beetles are associated with a specific gammaproteobacterial lineage, Stammera, whose reduced genome is streamlined for producing pectin-degrading enzymes to assist the host's digestion of food plants. We investigated the symbiotic system of 24 Japanese cassidine species and found that (i) most species harbored Stammera within paired symbiotic organs located at the foregut-midgut junction, (ii) the host phylogeny was largely congruent with the symbiont phylogeny, indicating stable host-symbiont association over evolutionary time, (iii) meanwhile, the symbiont was not detected in three distinct host lineages, uncovering recurrent losses of the ancient microbial mutualist, (iv) the symbiotic organs were vestigial but present in the symbiont-free lineages, indicating evolutionary persistence of the symbiotic organs even in the absence of the symbiont, and (v) the number of the symbiotic organs was polymorphic among the cassidine species, either two or four, unveiling a dynamic evolution of the host organs for symbiosis. These findings are discussed as to what molecular mechanisms and evolutionary trajectories underpin the recurrent symbiont losses and the morphogenesis of the symbiotic organs in the herbivorous insect group. IMPORTANCE Insects represent the biodiversity of the terrestrial ecosystem, and their prosperity is attributable to their association with symbiotic microorganisms. By sequestering microbial functionality into their bodies, organs, tissues, or cells, diverse insects have successfully exploited otherwise inaccessible ecological niches and resources, including herbivory enabled by utilization of indigestible plant cell wall components. In leaf beetles of the subfamily Cassininae, an ancient symbiont lineage, Stammera, whose genome is extremely reduced and specialized for encoding pectin-degrading enzymes, is hosted in gut-associated symbiotic organs and contributes to the host's food plant digestion. Here, we demonstrate that multiple symbiont losses and recurrent structural switching of the symbiotic organs have occurred in the evolutionary course of cassidine leaf beetles, which sheds light on the evolutionary and developmental dynamics of the insect's symbiotic organs and provides a model system to investigate how microbial symbionts affect the host's development and morphogenesis and vice versa.


Asunto(s)
Escarabajos , Tortugas , Animales , Escarabajos/microbiología , Simbiosis/genética , Ecosistema , Insectos/microbiología , Filogenia , Enterobacteriaceae/genética , Pectinas
15.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161284

RESUMEN

Microbial symbioses significantly contribute to diverse organisms, where long-lasting associations tend to result in symbiont genome erosion, uncultivability, extinction, and replacement. How such inherently deteriorating symbiosis can be harnessed to stable partnership is of general evolutionary interest. Here, we report the discovery of a host protein essential for sustaining symbiosis. Plataspid stinkbugs obligatorily host an uncultivable and genome-reduced gut symbiont, Ishikawaella Upon oviposition, females deposit "capsules" for symbiont delivery to offspring. Within the capsules, the fragile symbiotic bacteria survive the harsh conditions outside the host until acquired by newborn nymphs to establish vertical transmission. We identified a single protein dominating the capsule content, which is massively secreted by female-specific intestinal organs, embedding the symbiont cells, and packaged into the capsules. Knockdown of the protein resulted in symbiont degeneration, arrested capsule production, symbiont transmission failure, and retarded nymphal growth, unveiling its essential function for ensuring symbiont survival and vertical transmission. The protein originated from a lineage of odorant-binding protein-like multigene family, shedding light on the origin of evolutionary novelty regarding symbiosis. Experimental suppression of capsule production extended the female's lifespan, uncovering a substantial cost for maintaining symbiosis. In addition to the host's guardian protein, the symbiont's molecular chaperone, GroEL, was overproduced in the capsules, highlighting that the symbiont's eroding functionality is compensated for by stabilizer molecules of host and symbiont origins. Our finding provides insight into how intimate host-symbiont associations can be maintained over evolutionary time despite the symbiont's potential vulnerability to degeneration and malfunctioning.


Asunto(s)
Evolución Molecular , Heterópteros/fisiología , Proteínas de Insectos/metabolismo , Simbiosis , Animales , Femenino , Genoma , Fenotipo
16.
Zoolog Sci ; 38(3): 213-222, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34057345

RESUMEN

Many plant-sucking stinkbugs possess a specialized symbiotic organ with numerous crypts in a posterior region of the midgut. In stinkbugs of the superfamily Pentatomoidea, specific γ-proteobacteria are hosted in the crypt cavities, which are vertically transmitted through host generations and essential for normal growth and survival of the host insects. Here we report the discovery of an exceptional gut symbiotic association in the saw-toothed stinkbug, Megymenum gracilicorne (Hemiptera: Pentatomoidea: Dinidoridae), in which specific γ-proteobacterial symbionts are not transmitted vertically but acquired environmentally. Histological inspection identified a very thin and long midgut symbiotic organ with two rows of tiny crypts whose cavities harbor rod-shaped bacterial cells. Molecular phylogenetic analyses of bacterial 16S rRNA gene sequences from the symbiotic organs of field-collected insects revealed that (i) M. gracilicorne is stably associated with Pantoea-allied γ-proteobacteria within the midgut crypts, (ii) the symbiotic bacteria exhibit a considerable level of diversity across host individuals and populations, (iii) the major symbiotic bacteria represent an environmental bacterial lineage that was reported to be capable of symbiosis with the stinkbug Plautia stali, and (iv) the minor symbiotic bacteria also represent several bacterial lineages that were reported as cultivable symbionts of P. stali and other stinkbugs. The symbiotic bacteria were shown to be generally cultivable. Microbial inspection of ovipositing adult females and their eggs and nymphs uncovered the absence of stable vertical transmission of the symbiotic bacteria. Rearing experiments showed that symbiont-supplemented newborn nymphs exhibit improved survival, suggesting the beneficial nature of the symbiotic association.


Asunto(s)
Bacterias/aislamiento & purificación , Hemípteros/microbiología , Simbiosis , Animales , Bacterias/clasificación , Bacterias/genética , Clonación Molecular , ADN Bacteriano/genética , Microbiología Ambiental , Reacción en Cadena de la Polimerasa , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
17.
Zoological Lett ; 7(1): 8, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33985580

RESUMEN

Insect eggshells must meet various demands of developing embryos. These demands sometimes conflict with each other; therefore, there are tradeoffs between eggshell properties, such as robustness and permeability. To meet these conflicting demands, particular eggshell structures have evolved in diverse insect species. Here, we report a rare eggshell structure found in the eggshell of a cicada, Cryptotympana facialis. This species has a prolonged egg period with embryonic diapause and a trait of humidity-inducible hatching, which would impose severe demands on the eggshell. We found that in eggs of this species, unlike many other insect eggs, a dedicated cleavage site, known as a hatching line, was formed not in the chorion but in the serosal cuticle. The hatching line was composed of a fine furrow accompanied by ridges on both sides. This furrow-ridge structure formed in the terminal phase of embryogenesis through the partial degradation of an initially thick and nearly flat cuticle layer. We showed that the permeability of the eggshell was low in the diapause stage, when the cuticle was thick, and increased with degradation of the serosal cuticle. We also demonstrated that the force required to cleave the eggshell was reduced after the formation of the hatching line. These results suggest that the establishment of the hatching line on the serosal cuticle enables flexible modification of eggshell properties during embryogenesis, and we predict that it is an adaptation to maximize the protective role of the shell during the long egg period while reducing the barrier to emerging nymphs at the time of hatching.

18.
Zoolog Sci ; 37(5): 399-410, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32972080

RESUMEN

Cockroaches are commonly found in human residences and notorious as hygienic and nuisance pests. Notably, however, no more than 30 cockroach species are regarded as pests, while the majority of 4,500 cockroaches in the world are living in forest environments with little relevance to human life. Why some cockroaches have exceptionally adapted to anthropic environments and established pest status is of interest. Here we investigated the German cockroach Blattella germanica, which is a cosmopolitan pest species, and the forest cockroach Blattella nipponica, which is a wild species closely related to B. germanica. In contrast to easy rearing of B. germanica, laboratory rearing of B. nipponica was challenging-several trials enabled us to keep the insects for up to three months. We particularly focused on the distribution patterns of specialized cells, bacteriocytes, for harboring endosymbiotic Blattabacterium, which has been suggested to contribute to host's nitrogen metabolism and recycling, during the postembryonic development of the insects. The bacteriocytes were consistently localized to visceral fat bodies filling the abdominal body cavity, where a number of single bacteriocytes were scattered among the adipocytes, throughout the developmental stages in both females and males. The distribution patterns of the bacteriocytes were quite similar between B. germanica and B. nipponica, and also among other diverse cockroach species, plausibly reflecting the highly conserved cockroach-Blattabacterium symbiotic association over evolutionary time. Our study lays a foundation to experimentally investigate the origin and the processes of urban pest evolution, on account of possible involvement of microbial associates.


Asunto(s)
Bacteroidetes/fisiología , Cucarachas/citología , Cucarachas/microbiología , Simbiosis/fisiología , Animales , Filogenia
19.
Curr Biol ; 30(15): 2875-2886.e4, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32502409

RESUMEN

Numerous adaptations are gained in light of a symbiotic lifestyle. Here, we investigated the obligate partnership between tortoise leaf beetles (Chrysomelidae: Cassidinae) and their pectinolytic Stammera symbionts to detail how changes to the bacterium's streamlined metabolic range can shape the digestive physiology and ecological opportunity of its herbivorous host. Comparative genomics of 13 Stammera strains revealed high functional conservation, highlighted by the universal presence of polygalacturonase, a primary pectinase targeting nature's most abundant pectic class, homogalacturonan (HG). Despite this conservation, we unexpectedly discovered a disparate distribution for rhamnogalacturonan lyase, a secondary pectinase hydrolyzing the pectic heteropolymer, rhamnogalacturonan I (RG-I). Consistent with the annotation of rhamnogalacturonan lyase in Stammera, cassidines are able to depolymerize RG-I relative to beetles whose symbionts lack the gene. Given the omnipresence of HG and RG-I in foliage, Stammera that encode pectinases targeting both substrates allow their hosts to overcome a greater diversity of plant cell wall polysaccharides and maximize access to the nutritionally rich cytosol. Possibly facilitated by their symbionts' expanded digestive range, cassidines additionally endowed with rhamnogalacturonan lyase appear to utilize a broader diversity of angiosperms than those beetles whose symbionts solely supplement polygalacturonase. Our findings highlight how symbiont metabolic diversity, in concert with host adaptations, may serve as a potential source of evolutionary innovations for herbivorous lineages.


Asunto(s)
Escarabajos/fisiología , Fenómenos Fisiológicos del Sistema Digestivo , Sistema Digestivo/microbiología , Enterobacteriaceae/fisiología , Herbivoria/fisiología , Interacciones Huésped-Parásitos/fisiología , Fenómenos Fisiológicos de las Plantas , Simbiosis/fisiología , Animales , Enterobacteriaceae/enzimología , Poligalacturonasa , Polisacárido Liasas
20.
Zoological Lett ; 5: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31164991

RESUMEN

Diverse insects are intimately associated with microbial symbionts, which play a variety of biological roles in their adaptation to and survival in the natural environment. Such insects often possess specialized organs for hosting the microbial symbionts. What developmental processes and mechanisms underlie the formation of the host organs for microbial symbiosis is of fundamental biological interest but poorly understood. Here we investigate the morphogenesis of the midgut symbiotic organ and the process of symbiont colonization therein during the developmental course of the stinkbug Plautia stali. Upon hatching, the midgut is a simple and smooth tube. Subsequently, symbiont colonization to the posterior midgut occurs, and thickening and folding of the midgut epithelium proceed during the first instar period. By the second instar, rudimentary crypts have formed, and their inner cavities are colonized by the symbiotic bacteria. From the second instar to the fourth instar, while the alimentary tract grows and the posterior midgut is established as the symbiotic organ with numerous crypts, the anterior midgut and the posterior midgut are structurally and functionally isolated by a strong constriction in the middle. By the early fifth instar, the midgut symbiotic organ attains the maximal length, but toward the mid fifth instar, the basal region of each crypt starts to constrict and narrow, which deforms the midgut symbiotic organ as a whole into a shorter, thicker and twisted shape. By the late fifth instar to adulthood, the crypts are constricted off, by which the symbiotic bacteria are confined in the crypt cavities and isolated from the midgut main tract, and concurrently, the strong midgut constriction in the middle becomes loose and open, by which the food flow from the anterior midgut to the posterior midgut recovers. This study provides the most detailed and comprehensive descriptions ever reported on the morphogenesis of the symbiotic organ and the process of symbiont colonization in an obligatory insect-bacterium gut symbiotic system. Considering that P. stali is recently emerging as a useful model system for experimentally studying the intimate insect-microbe gut symbiosis, the knowledge obtained in this study establishes the foundation for the further development of this research field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA