Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
mSphere ; : e0038824, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940507

RESUMEN

The adaptation of gene deletion methods based on the CRISPR-Cas9 system has facilitated the genetic manipulation of the pathogenic yeast Candida albicans, because homozygous mutants of this diploid fungus can now be generated in a single step, allowing the rapid screening of candidate genes for their involvement in a phenotype of interest. However, the Cas9-mediated double-strand breaks at the target site may result in an undesired loss of heterozygosity (LOH) on the affected chromosome and cause phenotypic alterations that are not related to the function of the investigated gene. In our present study, we harnessed Cas9-facilitated gene deletion to probe a set of genes that are constitutively overexpressed in strains containing hyperactive forms of the transcription factor Mrr1 for a possible contribution to the fluconazole resistance of such strains. To this aim, we used gene deletion cassettes containing two different dominant selection markers, caSAT1 and HygB, which confer resistance to nourseothricin and hygromycin, respectively, for simultaneous genomic integration in a single step, hypothesizing that this would minimize undesired LOH events at the target locus. We found that selection for resistance to both nourseothricin and hygromycin strongly increased the proportion of homozygous deletion mutants among the transformants compared with selection on media containing only one of the antibiotics, but it did not avoid undesired LOH events. Our results demonstrate that LOH on the target chromosome is a significant problem when using Cas9 for the generation of C. albicans gene deletion mutants, which demands a thorough examination of recombination events at the target site. IMPORTANCE: Candida albicans is one of the medically most important fungi and a model organism to study fungal pathogenicity. Investigating gene function in this diploid yeast has been facilitated by the adaptation of gene deletion methods based on the bacterial CRISPR-Cas9 system, because they enable the generation of homozygous mutants in a single step. We found that, in addition to increasing the efficiency of gene replacement by selection markers, the Cas9-mediated double-strand breaks also result in frequent loss of heterozygosity on the same chromosome, even when two different selection markers were independently integrated into the two alleles of the target gene. Since loss of heterozygosity for other genes can result in phenotypic alterations that are not caused by the absence of the target gene, these findings show that it is important to thoroughly analyze recombination events at the target locus when using Cas9 to generate gene deletion mutants in C. albicans.

2.
mSphere ; : e0027024, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860767

RESUMEN

Zinc cluster transcription factors (ZCFs) are a family of transcription regulators that are almost exclusively found in the fungal kingdom. Activating mutations in the ZCFs Mrr1, Tac1, and Upc2 frequently cause acquired resistance to the widely used antifungal drug fluconazole in the pathogenic yeast Candida albicans. Similar to a hyperactive Tac1, a constitutively active form of the ZCF Znc1 causes increased fluconazole resistance by upregulating the multidrug efflux pump-encoding gene CDR1. Hyperactive forms of both Tac1 and Znc1 also cause overexpression of RTA3, which encodes a seven-transmembrane receptor protein involved in the regulation of asymmetric lipid distribution in the plasma membrane. RTA3 expression is also upregulated by miltefosine, an antiparasitic drug that is active against fungal pathogens and considered for treatment of invasive candidiasis, and rta3Δ mutants are hypersensitive to miltefosine. We found that activated forms of both Tac1 and Znc1 confer increased miltefosine resistance, which was dependent on RTA3 whereas CDR1 was dispensable. Intriguingly, the induction of RTA3 expression by miltefosine depended on Znc1, but not Tac1, in contrast to the known Tac1-dependent RTA3 upregulation by fluphenazine. In line with this observation, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. Forced expression of RTA3 reverted the hypersensitivity of znc1Δ mutants, demonstrating that the hypersensitivity was caused by the inability of the mutants to upregulate RTA3 in response to the drug. These findings establish Znc1 as a key regulator of miltefosine-induced RTA3 expression that is important for wild-type miltefosine tolerance. IMPORTANCE: Transcription factors are central regulators of gene expression, and knowledge about which transcription factor regulates specific genes in response to a certain signal is important to understand the behavior of organisms. In the pathogenic yeast Candida albicans, the RTA3 gene is required for wild-type tolerance of miltefosine, an antiparasitic drug that is considered for treatment of invasive candidiasis. Activated forms of the transcription factors Tac1 and Znc1 cause constitutive overexpression of RTA3 and thereby increased miltefosine resistance, but only Tac1 mediates upregulation of RTA3 in response to the known inducer fluphenazine. RTA3 expression is also induced by miltefosine, and we found that this response depends on Znc1, whereas Tac1 is dispensable. Consequently, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. These findings demonstrate that Znc1 is the key regulator of RTA3 expression in response to miltefosine that is important for wild-type miltefosine tolerance.

3.
mSphere ; 8(6): e0054623, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38010000

RESUMEN

IMPORTANCE: The SNF1 protein kinase signaling pathway, which is highly conserved in eukaryotic cells, is important for metabolic adaptations in the pathogenic yeast Candida albicans. However, so far, it has remained elusive how SNF1 controls the activity of one of its main effectors, the repressor protein Mig1 that inhibits the expression of genes required for the utilization of alternative carbon sources when glucose is available. In this study, we have identified multiple phosphorylation sites in Mig1 that contribute to its inactivation. Mutation of these sites strongly increased Mig1 repressor activity in the absence of SNF1, but SNF1 could still sufficiently inhibit the hyperactive Mig1 to enable growth on alternative carbon sources. These findings reveal features of Mig1 that are important for controlling its repressor activity. Furthermore, they demonstrate that both SNF1 and additional protein kinases regulate Mig1 in this pathogenic yeast.


Asunto(s)
Candida albicans , Proteínas de Saccharomyces cerevisiae , Candida albicans/genética , Candida albicans/metabolismo , Fosforilación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Carbono/metabolismo
4.
PLoS Pathog ; 19(9): e1011692, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37769015

RESUMEN

The signals that denote mammalian host environments and dictate the activation of signaling pathways in human-associated microorganisms are often unknown. The transcription regulator Rtg1/3 in the human fungal pathogen Candida albicans is a crucial determinant of host colonization and pathogenicity. Rtg1/3's activity is controlled, in part, by shuttling the regulator between the cytoplasm and nucleus of the fungus. The host signal(s) that Rtg1/3 respond(s) to, however, have remained unclear. Here we report that neutrophil-derived reactive oxygen species (ROS) direct the subcellular localization of this C. albicans transcription regulator. Upon engulfment of Candida cells by human or mouse neutrophils, the regulator shuttles to the fungal nucleus. Using genetic and chemical approaches to disrupt the neutrophils' oxidative burst, we establish that the oxidants produced by the NOX2 complex-but not the oxidants generated by myeloperoxidase-trigger Rtg1/3's migration to the nucleus. Furthermore, screening a collection of C. albicans kinase deletion mutants, we implicate the MKC1 signaling pathway in the ROS-dependent regulation of Rtg1/3 in this fungus. Finally, we show that Rtg1/3 contributes to C. albicans virulence in the nematode Caenorhabditis elegans in an ROS-dependent manner as the rtg1 and rtg3 mutants display virulence defects in wild-type but not in ROS deficient worms. Our findings establish NOX2-derived ROS as a key signal that directs the activity of the pleiotropic fungal regulator Rtg1/3.


Asunto(s)
Candida albicans , Neutrófilos , Animales , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neutrófilos/metabolismo , Candida , Oxidantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mamíferos
5.
PLoS Genet ; 19(8): e1010890, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37561787

RESUMEN

Protein kinases are central components of almost all signaling pathways that control cellular activities. In the model organism Saccharomyces cerevisiae, the paralogous protein kinases Ypk1 and Ypk2, which control membrane lipid homeostasis, are essential for viability, and previous studies strongly indicated that this is also the case for their single ortholog Ypk1 in the pathogenic yeast Candida albicans. Here, using FLP-mediated inducible gene deletion, we reveal that C. albicans ypk1Δ mutants are viable but slow-growing, explaining prior failures to obtain null mutants. Phenotypic analyses of the mutants showed that the functions of Ypk1 in regulating sphingolipid biosynthesis and cell membrane lipid asymmetry are conserved, but the consequences of YPK1 deletion are milder than in S. cerevisiae. Mutational studies demonstrated that the highly conserved PDK1 phosphorylation site T548 in its activation loop is essential for Ypk1 function, whereas the TORC2 phosphorylation sites S687 and T705 at the C-terminus are important for Ypk1-dependent resistance to membrane stress. Unexpectedly, Pkh1, the single C. albicans orthologue of Pkh1/Pkh2, which mediate Ypk1 phosphorylation at the PDK1 site in S. cerevisiae, was not required for normal growth of C. albicans under nonstressed conditions, and Ypk1 phosphorylation at T548 was only slightly reduced in pkh1Δ mutants. We found that another protein kinase, Pkh3, whose ortholog in S. cerevisiae cannot substitute Pkh1/2, acts redundantly with Pkh1 to activate Ypk1 in C. albicans. No phenotypic effects were observed in cells lacking Pkh3 alone, but pkh1Δ pkh3Δ double mutants had a severe growth defect and Ypk1 phosphorylation at T548 was completely abolished. These results establish that Ypk1 is not essential for viability in C. albicans and that, despite its generally conserved function, the Ypk1 signaling pathway is rewired in this pathogenic yeast and includes a novel upstream kinase to activate Ypk1 by phosphorylation at the PDK1 site.


Asunto(s)
Proteínas Quinasas , Proteínas de Saccharomyces cerevisiae , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Fosforilación
6.
Arch Pharm (Weinheim) ; 356(2): e2200463, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36403201

RESUMEN

Increasing resistance against antimycotic drugs challenges anti-infective therapies today and contributes to the mortality of infections by drug-resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'-dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole-susceptible and fluconazole-resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds.


Asunto(s)
Candida albicans , Fluconazol , Candida auris , Relación Estructura-Actividad , Antifúngicos/química , Pruebas de Sensibilidad Microbiana
7.
Antimicrob Agents Chemother ; 66(7): e0028922, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35699442

RESUMEN

Candida parapsilosis is a common cause of invasive candidiasis worldwide and is the most commonly is7olated Candida species among pediatric and neonatal populations. Previous work has demonstrated that nonsynonymous mutations in the gene encoding the putative transcription factor CpMrr1 can influence fluconazole susceptibility. However, the direct contribution of these mutations and how they influence fluconazole resistance in clinical isolates are poorly understood. We identified 7 nonsynonymous CpMRR1 mutations in 12 isolates from within a collection of 35 fluconazole-resistant clinical isolates. The mutations leading to the A854V, R479K, and I283R substitutions were further examined and found to be activating mutations leading to increased fluconazole resistance. In addition to CpMDR1, we identified two other genes, one encoding a major facilitator superfamily (MFS) transporter (CpMDR1B, CPAR2_603010) and one encoding an ATP-binding cassette (ABC) transporter (CpCDR1B, CPAR2_304370), as being upregulated in isolates carrying CpMRR1-activating mutations. Overexpression of CpMDR1 in a susceptible strain and disruption in resistant clinical isolates that overexpress CpMDR1 had little to no effect on fluconazole susceptibility. Conversely, overexpression of either CpMDR1B or CpCDR1B increased resistance, and disruption in clinical isolates overexpressing these genes decreased fluconazole resistance. Our findings suggest that activating mutations in CpMRR1 represent important genetic determinants of fluconazole resistance in clinical isolates of C. parapsilosis, and unlike what is observed in Candida albicans, this is primarily driven by upregulation of both MFS (CpMdr1B) and ABC (CpCdr1B) transporters.


Asunto(s)
Candida parapsilosis , Farmacorresistencia Fúngica , Fluconazol , Transportadoras de Casetes de Unión a ATP/genética , Antifúngicos/farmacología , Candida albicans/genética , Candida albicans/metabolismo , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/metabolismo , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana
8.
Front Cell Infect Microbiol ; 12: 850531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601106

RESUMEN

Protein kinases play a crucial role in regulating cellular processes such as growth, proliferation, environmental adaptation and stress responses. Serine-arginine (SR) protein kinases are highly conserved in eukaryotes and regulate fundamental processes such as constitutive and alternative splicing, mRNA processing and ion homeostasis. The Candida albicans genome encodes two (Sky1, Sky2) and the Candida glabrata genome has one homolog (Sky1) of the human SR protein kinase 1, but their functions have not yet been investigated. We used deletion strains of the corresponding genes in both fungi to study their cellular functions. C. glabrata and C. albicans strains lacking SKY1 exhibited higher resistance to osmotic stress and toxic polyamine concentrations, similar to Saccharomyces cerevisiae sky1Δ mutants. Deletion of SKY2 in C. albicans resulted in impaired utilization of various dipeptides as the sole nitrogen source. Subsequent phosphoproteomic analysis identified the di- and tripeptide transporter Ptr22 as a potential Sky2 substrate. Sky2 seems to be involved in Ptr22 regulation since overexpression of PTR22 in the sky2Δ mutant restored the ability to grow on dipeptides and made the cells more susceptible to the dipeptide antifungals Polyoxin D and Nikkomycin Z. Altogether, our results demonstrate that C. albicans and C. glabrata Sky1 protein kinases are functionally similar to Sky1 in S. cerevisiae, whereas C. albicans Sky2, a unique kinase of the CTG clade, likely regulates dipeptide uptake via Ptr22.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Proteínas Serina-Treonina Quinasas , Candida albicans/enzimología , Candida albicans/genética , Candida glabrata , Dipéptidos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostasis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
PLoS Pathog ; 18(2): e1010283, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108336

RESUMEN

Protein kinases play central roles in virtually all signaling pathways that enable organisms to adapt to their environment. Microbial pathogens must cope with severely restricted iron availability in mammalian hosts to invade and establish themselves within infected tissues. To uncover protein kinase signaling pathways that are involved in the adaptation of the pathogenic yeast Candida albicans to iron limitation, we generated a comprehensive protein kinase deletion mutant library of a wild-type strain. Screening of this library revealed that the protein kinase Ire1, which has a conserved role in the response of eukaryotic cells to endoplasmic reticulum stress, is essential for growth of C. albicans under iron-limiting conditions. Ire1 was not necessary for the activity of the transcription factor Sef1, which regulates the response of the fungus to iron limitation, and Sef1 target genes that are induced by iron depletion were normally upregulated in ire1Δ mutants. Instead, Ire1 was required for proper localization of the high-affinity iron permease Ftr1 to the cell membrane. Intriguingly, iron limitation did not cause increased endoplasmic reticulum stress, and the transcription factor Hac1, which is activated by Ire1-mediated removal of the non-canonical intron in the HAC1 mRNA, was dispensable for Ftr1 localization to the cell membrane and growth under iron-limiting conditions. Nevertheless, expression of a pre-spliced HAC1 copy in ire1Δ mutants restored Ftr1 localization and rescued the growth defects of the mutants. Both ire1Δ and hac1Δ mutants were avirulent in a mouse model of systemic candidiasis, indicating that an appropriate response to endoplasmic reticulum stress is important for the virulence of C. albicans. However, the specific requirement of Ire1 for the functionality of the high-affinity iron permease Ftr1, a well-established virulence factor, even in the absence of endoplasmic reticulum stress uncovers a novel Hac1-independent essential role of Ire1 in iron acquisition and virulence of C. albicans.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Candida albicans/metabolismo , Candidiasis/microbiología , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Candida albicans/genética , Candida albicans/patogenicidad , ADN de Hongos , Estrés del Retículo Endoplásmico , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Ratones Endogámicos BALB C , Proteínas Serina-Treonina Quinasas/genética , Eliminación de Secuencia , Transducción de Señal , Organismos Libres de Patógenos Específicos , Virulencia
10.
Genetics ; 220(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34849863

RESUMEN

Zinc cluster transcription factors (TFs) are essential fungal regulators of gene expression. In the pathogen Candida albicans, the gene orf19.1604 encodes a zinc cluster TF regulating filament development. Hyperactivation of orf19.1604, which we have named RHA1 for Regulator of Hyphal Activity, generates wrinkled colony morphology under nonhyphal growth conditions, triggers filament formation, invasiveness, and enhanced biofilm formation and causes reduced virulence in the mouse model of systemic infection. The strain expressing activated Rha1 shows up-regulation of genes required for filamentation and cell-wall-adhesion-related proteins. Increased expression is also seen for the hyphal-inducing TFs Brg1 and Ume6, while the hyphal repressor Nrg1 is downregulated. Inactivation of RHA1 reduces filamentation under a variety of filament-inducing conditions. In contrast to the partial effect of either single mutant, the double rha1 ume6 mutant strain is highly defective in both serum- and Spider-medium-stimulated hyphal development. While the loss of Brg1 function blocks serum-stimulated hyphal development, this block can be significantly bypassed by Rha1 hyperactivity, and the combination of Rha1 hyperactivity and serum addition can generate significant polarization even in brg1 ume6 double mutants. Thus, in response to external signals, Rha1 functions with other morphogenesis regulators including Brg1 and Ume6, to mediate filamentation.


Asunto(s)
Candida albicans
11.
mSphere ; 6(6): e0092921, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34908458

RESUMEN

The heterotrimeric protein kinase SNF1 is a key regulator of metabolic adaptation in the pathogenic yeast Candida albicans, and mutants with a defective SNF1 complex cannot grow on carbon sources other than glucose. We identified a novel type of suppressor mutation in the ß-subunit Kis1 that rescued the growth defects of cells lacking the regulatory γ-subunit Snf4 of the SNF1 complex. Unlike wild-type Kis1, the mutated Kis1A396T could bind to the catalytic α-subunit Snf1 in the absence of Snf4. Binding of Kis1A396T did not enhance phosphorylation of Snf1 by the upstream activating kinase Sak1, which is impaired in snf4Δ mutants. Nevertheless, the mutated Kis1A396T reestablished SNF1-dependent gene expression, confirming that SNF1 functionality was restored. The repressor proteins Mig1 and Mig2 were phosphorylated even in the absence of Snf1, but their phosphorylation patterns were altered, indicating that SNF1 regulates Mig1 and Mig2 activity indirectly. In contrast to wild-type cells, mutants lacking Snf4 were unable to reduce the amounts of Mig1 and Mig2 when grown on alternative carbon sources, and this deficiency was also remediated by the mutated Kis1A396T. These results provide novel insights into the regulation of SNF1 and the repressors Mig1 and Mig2 in the metabolic adaptation of C. albicans. IMPORTANCE The highly conserved protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans, but it is not clear how it regulates its downstream targets in this fungus. We show that the repressor proteins Mig1 and Mig2 are phosphorylated also in cells lacking the catalytic α-subunit Snf1 of the SNF1 complex, but the amounts of both proteins were reduced in wild-type cells when glucose was replaced by alternative carbon sources, pointing to an indirect mechanism of regulation. Mutants lacking the regulatory γ-subunit Snf4 of the SNF1 complex, which cannot grow on alternative carbon sources, were unable to downregulate Mig1 and Mig2 levels. We identified a novel type of suppressor mutation, an amino acid substitution in the ß-subunit Kis1, which enabled Kis1 to bind to Snf1 in the absence of Snf4, thereby restoring Mig1 and Mig2 downregulation, SNF1-dependent gene expression, and growth on alternative carbon sources. These results provide new insights into the SNF1 signaling pathway in C. albicans.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Candida albicans/enzimología , Candida albicans/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Supresión Genética , Proteínas Quinasas Activadas por AMP/metabolismo , Sustitución de Aminoácidos , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/genética , Transducción de Señal
12.
Mol Microbiol ; 116(2): 483-497, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33860578

RESUMEN

The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall.


Asunto(s)
Candida albicans/metabolismo , Pared Celular/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Antifúngicos/farmacología , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Caspofungina/farmacología , Pared Celular/inmunología , Pared Celular/metabolismo , Eliminación de Gen , Neutrófilos/inmunología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/fisiología
13.
mSphere ; 5(4)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32817381

RESUMEN

The protein kinase Snf1, a member of the highly conserved AMP-activated protein kinase family, is a central regulator of metabolic adaptation. In the pathogenic yeast Candida albicans, Snf1 is considered to be essential, as previous attempts by different research groups to generate homozygous snf1Δ mutants were unsuccessful. We aimed to elucidate why Snf1 is required for viability in C. albicans by generating snf1Δ null mutants through forced, inducible gene deletion and observing the terminal phenotype before cell death. Unexpectedly, we found that snf1Δ mutants were viable and could grow, albeit very slowly, on rich media containing the preferred carbon source glucose. Growth was improved when the cells were incubated at 37°C instead of 30°C, and this phenotype enabled us to isolate homozygous snf1Δ mutants also by conventional, sequential deletion of both SNF1 alleles in a wild-type C. albicans strain. All snf1Δ mutants could grow slowly on glucose but were unable to utilize alternative carbon sources. Our results show that, under optimal conditions, C. albicans can live and grow without Snf1. Furthermore, they demonstrate that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicansIMPORTANCE Essential genes are those that are indispensable for the viability and growth of an organism. Previous studies indicated that the protein kinase Snf1, a central regulator of metabolic adaptation, is essential in the pathogenic yeast Candida albicans, because no homozygous snf1 deletion mutants of C. albicans wild-type strains could be obtained by standard approaches. In order to investigate the lethal consequences of SNF1 deletion, we generated conditional mutants in which SNF1 could be deleted by forced, inducible excision from the genome. Unexpectedly, we found that snf1 null mutants were viable and could grow slowly under optimal conditions. The growth phenotypes of the snf1Δ mutants explain why such mutants were not recovered in previous attempts. Our study demonstrates that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans.


Asunto(s)
Candida albicans/enzimología , Candida albicans/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Proteínas Serina-Treonina Quinasas/genética , Carbono/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Esenciales , Mutación , Fenotipo
14.
mSphere ; 5(2)2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321822

RESUMEN

The recently emerged pathogenic yeast Candida auris is a major concern for human health, because it is easily transmissible, difficult to eradicate from hospitals, and highly drug resistant. Most C. auris isolates are resistant to the widely used antifungal drug fluconazole due to mutations in the target enzyme Erg11 and high activity of efflux pumps, such as Cdr1. In the well-studied, distantly related yeast Candida albicans, overexpression of drug efflux pumps also is a major mechanism of acquired fluconazole resistance and caused by gain-of-function mutations in the zinc cluster transcription factors Mrr1 and Tac1. In this study, we investigated a possible involvement of related transcription factors in efflux pump expression and fluconazole resistance of C. auris The C. auris genome contains three genes encoding Mrr1 homologs and two genes encoding Tac1 homologs, and we generated deletion mutants lacking these genes in two fluconazole-resistant strains from clade III and clade IV. Deletion of TAC1b decreased the resistance to fluconazole and voriconazole in both strain backgrounds, demonstrating that the encoded transcription factor contributes to azole resistance in C. auris strains from different clades. CDR1 expression was not or only minimally affected in the mutants, indicating that Tac1b can confer increased azole resistance by a CDR1-independent mechanism.IMPORTANCECandida auris is a recently emerged pathogenic yeast that within a few years after its initial description has spread all over the globe. C. auris is a major concern for human health, because it can cause life-threatening systemic infections, is easily transmissible, and is difficult to eradicate from hospital environments. Furthermore, C. auris is highly drug resistant, especially against the widely used antifungal drug fluconazole. Mutations in the drug target and high activity of efflux pumps are associated with azole resistance, but it is not known how drug resistance genes are regulated in C. auris We have investigated the potential role of several candidate transcriptional regulators in the intrinsic fluconazole resistance of C. auris and identified a transcription factor that contributes to the high resistance to fluconazole and voriconazole of two C. auris strains from different genetic clades, thereby providing insight into the molecular basis of drug resistance of this medically important yeast.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Factores de Transcripción/genética , Zinc/metabolismo , Candida/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Mutación
15.
mBio ; 11(2)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345638

RESUMEN

The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1 In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1 In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies.IMPORTANCECandida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans.


Asunto(s)
Candida albicans/genética , Proteínas Represoras/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Hifa/crecimiento & desarrollo , Estadios del Ciclo de Vida/genética , Virulencia/genética
16.
FEMS Yeast Res ; 19(6)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31403663

RESUMEN

The commensal species Candida parapsilosis is an emerging human pathogen that has the ability to form biofilms. In this study, we explored the impact of the divalent cations cobalt (Co2+), copper (Cu2+), iron (Fe3+), manganese (Mn2+), nickel (Ni2+) and zinc (Zn2+) on biofilm formation of clinical isolates of C. parapsilosis with no, low and high biofilm forming abilities at 30 and 37°C. All strains besides one isolate showed a concentration-dependent enhancement of biofilm formation at 30°C in the presence of Mn2+ with a maximum at 2 mM. The biofilm forming ability of no and low biofilm forming isolates was >2-fold enhanced in the presence of 2 mM Mn2+, while the effect in high biofilm forming isolate was significantly less pronounced. Of note, cells in the biofilms of no and low biofilm forming strains differentiated into yeast and pseudohyphal cells similar in morphology to high biofilm formers. The biofilm transcriptional activator BCR1 has a dual developmental role in the absence and presence of 2 mM Mn2+ as it promoted biofilm formation of no biofilm forming strains, and, surprisingly, suppressed cells of no biofilm forming strains to develop into pseudohyphae and/or hyphae. Thus, environmental conditions can significantly affect the amount of biofilm formation and cell morphology of C. parapsilosis with Mn2+ to overcome developmental blocks to trigger biofilm formation and to partially relieve BCR1 suppressed cell differentiation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida parapsilosis/efectos de los fármacos , Candidiasis/microbiología , Cationes Bivalentes/farmacología , Proteínas Fúngicas/metabolismo , Manganeso/farmacología , Biopelículas/efectos de los fármacos , Candida parapsilosis/citología , Candida parapsilosis/crecimiento & desarrollo , Diferenciación Celular/efectos de los fármacos , Proteínas Fúngicas/genética , Humanos , Hifa/citología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Eliminación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
mSphere ; 4(3)2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217306

RESUMEN

The heterotrimeric protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans It consists of the essential catalytic α-subunit Snf1, the γ-subunit Snf4, and one of the two ß-subunits Kis1 and Kis2. Snf4 is required to release the N-terminal catalytic domain of Snf1 from autoinhibition by the C-terminal regulatory domain, and snf4Δ mutants cannot grow on carbon sources other than glucose. In a screen for suppressor mutations that restore growth of a snf4Δ mutant on alternative carbon sources, we isolated a mutant in which six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain of Snf1 were deleted. The deletion was caused by an intragenic recombination event between two 8-bp direct repeats flanking six intervening codons. In contrast to truncated forms of Snf1 that contain only the kinase domain, the Snf4-independent Snf1Δ311 - 316 was fully functional and could replace wild-type Snf1 for normal growth, because it retained the ability to interact with the Kis1 and Kis2 ß-subunits via its C-terminal domain. Indeed, the Snf4-independent Snf1Δ311 - 316 still required the ß-subunits of the SNF1 complex to perform its functions and did not rescue the growth defects of kis1Δ mutants. Our results demonstrate that a preprogrammed in-frame deletion event within the SNF1 coding region can generate a mutated form of this essential kinase which abolishes autoinhibition and thereby overcomes growth deficiencies caused by a defect in the γ-subunit Snf4.IMPORTANCE Genomic alterations, including different types of recombination events, facilitate the generation of genetically altered variants and enable the pathogenic yeast Candida albicans to adapt to stressful conditions encountered in its human host. Here, we show that a specific recombination event between two 8-bp direct repeats within the coding sequence of the SNF1 gene results in the deletion of six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain and relieves this essential kinase from autoinhibition. This preprogrammed deletion allowed C. albicans to overcome growth defects caused by the absence of the regulatory subunit Snf4 and represents a built-in mechanism for the generation of a Snf4-independent Snf1 kinase.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Candida albicans/enzimología , Candida albicans/genética , Proteínas Serina-Treonina Quinasas/genética , Recombinación Genética , Proteínas Quinasas Activadas por AMP/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Eliminación de Secuencia
18.
Artículo en Inglés | MEDLINE | ID: mdl-30833425

RESUMEN

Mutations in genes encoding zinc cluster transcription factors (ZCFs) such as TAC1, MRR1, and UPC2 play a key role in Candida albicans azole antifungal resistance. Artificial activation of the ZCF Mrr2 has shown increased expression of the gene encoding the Cdr1 efflux pump and resistance to fluconazole. Amino acid substitutions in Mrr2 have recently been reported to contribute to fluconazole resistance in clinical isolates. In the present study, 57 C. albicans clinical isolates with elevated fluconazole MICs were examined for mutations in MRR2 and expression of CDR1 Mutations in MRR2 resulting in 15 amino acid substitutions were uniquely identified among resistant isolates, including 4 substitutions (S466L, A468G, S469T, T470N) previously reported to reduce fluconazole susceptibility. Three additional, novel amino acid substitutions (R45Q, A459T, V486M) were also discovered in fluconazole-resistant isolates. When introduced into a fluconazole-susceptible background, no change in fluconazole MIC or CDR1 expression was observed for any of the mutations found in this collection. However, introduction of an allele leading to artificial activation of Mrr2 increased resistance to fluconazole as well as CDR1 expression. Moreover, Mrr2 amino acid changes reported previously to have the strongest effect on fluconazole susceptibility and CDR1 expression also exhibited no differences in fluconazole susceptibility or CDR1 expression relative to the parent strain. While all known fluconazole resistance mechanisms are represented within this collection of clinical isolates and contribute to fluconazole resistance to different extents, mutations in MRR2 do not appear to alter CDR1 expression or contribute to resistance in any of these isolates.


Asunto(s)
Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Azoles/farmacología , Candida albicans/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/genética , Pruebas de Sensibilidad Microbiana , Mutación/genética , Factores de Transcripción/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-30910896

RESUMEN

The fungal Cyp51-specific inhibitors VT-1161 and VT-1598 have emerged as promising new therapies to combat fungal infections, including Candida spp. To evaluate their in vitro activities compared to other azoles, MICs were determined by Clinical and Laboratory Standards Institute (CLSI) method for VT-1161, VT-1598, fluconazole, voriconazole, itraconazole, and posaconazole against 68 C. albicans clinical isolates well characterized for azole resistance mechanisms and mutant strains representing individual azole resistance mechanisms. VT-1161 and VT-1598 demonstrated potent activity (geometric mean MICs ≤0.15 µg/ml) against predominantly fluconazole-resistant (≥8 µg/ml) isolates. However, five of 68 isolates exhibited MICs greater than six dilutions (>2 µg/ml) to both tetrazoles compared to fluconazole-susceptible isolates. Four of these isolates likewise exhibited high MICs beyond the upper limit of the assay for all triazoles tested. A premature stop codon in ERG3 likely explained the high-level resistance in one isolate. VT-1598 was effective against strains with hyperactive Tac1, Mrr1, and Upc2 transcription factors and against most ERG11 mutant strains. VT-1161 MICs were elevated compared to the control strain SC5314 for hyperactive Tac1 strains and two strains with Erg11 substitutions (Y132F and Y132F&K143R) but showed activity against hyperactive Mrr1 and Upc2 strains. While mutations affecting Erg3 activity appear to greatly reduce susceptibility to VT-1161 and VT-1598, the elevated MICs of both tetrazoles for four isolates could not be explained by known azole resistance mechanisms, suggesting the presence of undescribed resistance mechanisms to triazole- and tetrazole-based sterol demethylase inhibitors.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida albicans/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Piridinas/farmacología , Tetrazoles/farmacología , Candida albicans/genética , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Mutación/genética , Factores de Transcripción/genética
20.
mBio ; 10(1)2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723130

RESUMEN

The clonal population structure of Candida albicans suggests that (para)sexual recombination does not play an important role in the lifestyle of this opportunistic fungal pathogen, an assumption that is strengthened by the fact that most C. albicans strains are heterozygous at the mating type locus (MTL) and therefore mating-incompetent. On the other hand, mating might occur within clonal populations and allow the combination of advantageous traits that were acquired by individual cells to adapt to adverse conditions. We have investigated if parasexual recombination may be involved in the evolution of highly drug-resistant strains exhibiting multiple resistance mechanisms against fluconazole, an antifungal drug that is commonly used to treat infections by C. albicans Growth of strains that were heterozygous for MTL and different fluconazole resistance mutations in the presence of the drug resulted in the emergence of derivatives that had become homozygous for the mutated allele and the mating type locus and exhibited increased drug resistance. When MTLa/a and MTLα/α cells of these strains were mixed in all possible combinations, we could isolate mating products containing the genetic material from both parents. The initial mating products did not exhibit higher drug resistance than their parental strains, but further propagation under selective pressure resulted in the loss of the wild-type alleles and increased fluconazole resistance. Therefore, fluconazole treatment not only selects for resistance mutations but also promotes genomic alterations that confer mating competence, which allows cells in an originally clonal population to exchange individually acquired resistance mechanisms and generate highly drug-resistant progeny.IMPORTANCE Sexual reproduction is an important mechanism in the evolution of species, since it allows the combination of advantageous traits of individual members in a population. The pathogenic yeast Candida albicans is a diploid organism that normally propagates in a clonal fashion, because heterozygosity at the mating type locus (MTL) inhibits mating between cells. Here we show that C. albicans cells that have acquired drug resistance mutations during treatment with the commonly used antifungal agent fluconazole rapidly develop further increased resistance by genome rearrangements that result in simultaneous loss of heterozygosity for the mutated allele and the mating type locus. This enables the drug-resistant cells of a population to switch to the mating-competent opaque morphology and mate with each other to combine different individually acquired resistance mechanisms. The tetraploid mating products reassort their merged genomes and, under selective pressure by the drug, generate highly resistant progeny that have retained the advantageous mutated alleles. Parasexual propagation, promoted by stress-induced genome rearrangements that result in the acquisition of mating competence in cells with adaptive mutations, may therefore be an important mechanism in the evolution of C. albicans populations.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Farmacorresistencia Fúngica , Fluconazol/farmacología , Recombinación Genética , Candida albicans/crecimiento & desarrollo , Genes del Tipo Sexual de los Hongos , Heterocigoto , Homocigoto , Mutación , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA