RESUMEN
Vibrio cholerae is an important foodborne pathogen. Cholix cytotoxin (Cholix), produced by V. cholerae, is a novel eukaryotic elongation factor 2 (eEF2) adenosine diphosphate ribosyltransferase that causes host cell death by inhibiting protein synthesis. However, the role of Cholix in the infectious diseases caused by V. cholerae remains unclear. Some bacterial cytotoxins are carried by host extracellular vesicles (EVs) and transferred to other cells. In this study, we investigated the effects of EV inhibitors and EV-regulating proteins on Cholix-induced hepatocyte death. We observed that Cholix-induced cell death was significantly enhanced in the presence of EV inhibitors (e.g., dimethyl amiloride, and desipramine) and Rab27a-knockdown cells, but it did not involve a sphingomyelin-dependent pathway. RNA sequencing analysis revealed that desipramine, imipramine, and EV inhibitors promoted the Cholix-activated c-Jun NH2-terminal kinase (JNK) pathway. Furthermore, JNK inhibition decreased desipramine-enhanced Cholix-induced poly (ADP-ribose) polymerase (PARP) cleavage. In addition, suppression of Apaf-1 by small interfering RNA further enhanced Cholix-induced PARP cleavage by desipramine. We identified a novel function of desipramine in which the stimulated JNK pathway promoted a mitochondria-independent cell death pathway by Cholix.
Asunto(s)
Muerte Celular , Vesículas Extracelulares , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Muerte Celular/efectos de los fármacos , Humanos , Desipramina/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Animales , Proteínas rab27 de Unión a GTP/metabolismo , Proteínas rab27 de Unión a GTP/genética , Células Hep G2 , Imipramina/farmacologíaRESUMEN
BACKGROUND: Little research is available to provide practical guidance to health care providers for exercise preparticipation screening and referral of patients with interstitial lung diseases (ILDs), including lymphangioleiomyomatosis (LAM), to participate in remote, unsupervised exercise programs. RESEARCH QUESTION: What exercise preparticipation screening steps are essential to determine whether a patient with LAM is medically appropriate to participate in a remote, unsupervised exercise program? STUDY DESIGN AND METHODS: Sixteen experts in LAM and ILD participated in a two-round modified Delphi study, ranking their level of agreement for 10 statements related to unsupervised exercise training in LAM, with an a priori definition of consensus. Additionally, 60 patients with LAM completed a survey of the perceived risks and benefits of remote exercise training in LAM. RESULTS: Seven of the 10 statements reached consensus among experts. Experts agreed that an in-person clinical exercise test is indicated to screen for exercise-induced hypoxemia and prescribe supplemental oxygen therapy as indicated prior to initiating a remote exercise program. Patients with recent pneumothorax should wait to start an exercise program for at least 4 weeks until after resolution of pneumothorax and clearance by a physician. Patients with high cardiovascular risk for event during exercise, severe resting pulmonary hypertension, or risk for falls may be more appropriate for referral to a rehabilitation center. A LAM-specific remote exercise preparticipation screening tool was developed from the consensus statements and agreed upon by the panelists. INTERPRETATION: A modified Delphi study approach was useful to develop disease-specific recommendations for safety and preparticipation screening prior to unsupervised, remotely administered exercise in LAM. The primary product of this study is a clinical decision aid for providers to use when medically screening patients prior to participation in the newly launched LAMFit remote exercise program.
RESUMEN
In cystic lung diseases such as lymphangioleiomyomatosis (LAM), a CT-based cyst score that measures the percentage of the lung volume occupied by cysts is a common index of the cyst burden in the lungs. Although the current semi-automatic measurement of the cyst score is well established, it is susceptible to human operator variabilities. We recently developed a fully automatic method incorporating adaptive features in place of manual adjustments. In this clinical study, the automatic method is validated against the standard method in several aspects. These include the agreement between the cyst scores of the two methods, the agreement of each method with independent tests of pulmonary function, and the temporal consistency of the measurements in the consecutive visits of the same patients. We found that the automatic method agreed with the standard method as well as the agreement between two trained operators running the same standard method; both methods obtained the same level of correlation with laboratory pulmonary function tests; the automated method had better temporal consistency than the standard method (p < 0.0001). The study indicates that the automatic method could replace the standard method and provide better consistency in assessing the extent of cystic changes in the lungs of patients.
RESUMEN
Lymphangioleiomyomatosis (LAM) is a rare, progressive cystic lung disease affecting almost exclusively female-sexed individuals. The cysts represent regions of lung destruction caused by smooth muscle tumors containing mutations in one of the two tuberous sclerosis (TSC) genes. mTORC1 inhibition slows but does not stop LAM advancement. Furthermore, monitoring disease progression is hindered by insufficient biomarkers. Therefore, new treatment options and biomarkers are needed. LAM cells express melanocytic markers, including glycoprotein non-metastatic melanoma protein B (GPNMB). The function of GPNMB in LAM is currently unknown; however, GPNMB's unique cell surface expression on tumor versus benign cells makes GPNMB a potential therapeutic target, and persistent release of its extracellular ectodomain suggests potential as a serum biomarker. Here, we establish that GPNMB expression is dependent on mTORC1 signaling, and that GPNMB regulates TSC2-null tumor cell invasion in vitro. Further, we demonstrate that GPNMB enhances TSC2-null xenograft tumor growth in vivo, and that ectodomain release is required for this xenograft growth. We also show that GPNMB's ectodomain is released from the cell surface of TSC2-null cells by proteases ADAM10 and 17, and we identify the protease target sequence on GPNMB. Finally, we demonstrate that GPNMB's ectodomain is present at higher levels in LAM patient serum compared to healthy controls and that ectodomain levels decrease with mTORC1 inhibition, making it a potential LAM biomarker.
Asunto(s)
Biomarcadores de Tumor , Linfangioleiomiomatosis , Glicoproteínas de Membrana , Linfangioleiomiomatosis/metabolismo , Linfangioleiomiomatosis/patología , Linfangioleiomiomatosis/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Animales , Biomarcadores de Tumor/metabolismo , Femenino , Ratones , Línea Celular Tumoral , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Proliferación CelularRESUMEN
microRNAs (miRs) function in cancer progression as post-transcriptional regulators. We previously reported that endogenous circular RNAs (circRNAs) function as efficient miR sponges and could act as novel gene regulators in oral squamous cell carcinoma (OSCC). In this study, we carried out cellular and luciferase reporter assays to examine competitive inhibition of miR-1269a, which is upregulated expression in several cancers, by circRNA-1269a, a synthetic circRNA that contains miR-1269a binding sequences. We also used data-independent acquisition (DIA) proteomics and in silico analyses to determine how circRNA-1269a treatment affects molecules downstream of miR-1269a. First, we confirmed the circularization of the linear miR-1269a binding site sequence using RT-PCR with divergent/convergent primers and direct sequencing of the head-to-tail circRNA junction point. In luciferase reporter and cellular functional assays, circRNA-1269a significantly reduced miR-1269a function, leading to a significant decrease in cell proliferation and migration. DIA proteomics and gene set enrichment analysis of OSCC cells treated with circRNA-1269a indicated high differential expression for 284 proteins that were mainly enriched in apoptosis pathways. In particular, phospholipase C gamma 2 (PLCG2), which is related to OSCC clinical stage and overall survival, was affected by the circRNA-1269a/miR-1269a axis. Taken together, synthetic circRNA-1269a inhibits tumor progression via miR-1269a and its downstream targets, indicating that artificial circRNAs could represent an effective OSCC therapeutic.
RESUMEN
PURPOSE: Frequent CT scans to quantify lung involvement in cystic lung disease increases radiation exposure. Beam shaping energy filters can optimize imaging properties at lower radiation dosages. The aim of this study is to investigate whether use of SilverBeam filter and deep learning reconstruction algorithm allows for reduced radiation dose chest CT scanning in patients with lymphangioleiomyomatosis (LAM). MATERIAL AND METHODS: In a single-center prospective study, 60 consecutive patients with LAM underwent chest CT at standard and ultra-low radiation doses. Standard dose scan was performed with standard copper filter and ultra-low dose scan was performed with SilverBeam filter. Scans were reconstructed using a soft tissue kernel with deep learning reconstruction (AiCE) technique and using a soft tissue kernel with hybrid iterative reconstruction (AIDR3D). Cyst scores were quantified by semi-automated software. Signal-to-noise ratio (SNR) was calculated for each reconstruction. Data were analyzed by linear correlation, paired t-test, and Bland-Altman plots. RESULTS: Patients averaged 49.4 years and 100% were female with mean BMI 26.6 ± 6.1 kg/m2. Cyst score measured by AiCE reconstruction with SilverBeam filter correlated well with that of AIDR3D reconstruction with standard filter, with a 1.5% difference, and allowed for an 85.5% median radiation dosage reduction (0.33 mSv vs. 2.27 mSv, respectively, p < 0.001). Compared to standard filter with AIDR3D, SNR for SilverBeam AiCE images was slightly lower (3.2 vs. 3.1, respectively, p = 0.005). CONCLUSION: SilverBeam filter with deep learning reconstruction reduces radiation dosage of chest CT, while maintaining accuracy of cyst quantification as well as image quality in cystic lung disease. CLINICAL RELEVANCE STATEMENT: Radiation dosage from chest CT can be significantly reduced without sacrificing image quality by using silver filter in combination with a deep learning reconstructive algorithm. KEY POINTS: ⢠Deep learning reconstruction in chest CT had no significant effect on cyst quantification when compared to conventional hybrid iterative reconstruction. ⢠SilverBeam filter reduced radiation dosage by 85.5% compared to standard dose chest CT. ⢠SilverBeam filter in coordination with deep learning reconstruction maintained image quality and diagnostic accuracy for cyst quantification when compared to standard dose CT with hybrid iterative reconstruction.
Asunto(s)
Aprendizaje Profundo , Linfangioleiomiomatosis , Dosis de Radiación , Plata , Tomografía Computarizada por Rayos X , Humanos , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos , Masculino , Linfangioleiomiomatosis/diagnóstico por imagen , Adulto , Radiografía Torácica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , AlgoritmosRESUMEN
(1) Background: Lymphangioleiomyomatosis is a genetic disease that affects mostly women of childbearing age. In the lungs, it manifests as the progressive formation of air-filled cysts and is associated with a decline in lung function. With a median survival of 29 years after the onset of symptoms, computed-tomographic monitoring of cystic changes in the lungs is a key part of the management of the disease. However, the current standard method to measure cyst burdens from CT is semi-automatic and requires manual adjustments from trained operators to obtain consistent results due to variabilities in CT technology and imaging conditions over the long course of the disease. This can be impractical for longitudinal studies involving large numbers of scans and is susceptible to subjective biases. (2) Methods: We developed an automated method of pulmonary cyst segmentation for chest CT images incorporating novel graphics processing algorithms. We assessed its performance against the gold-standard semi-automated method performed by experienced operators who were blinded to the results of the automated method. (3) Results: the automated method had the same consistency over time as the gold-standard method, but its cyst scores were more strongly correlated with concurrent pulmonary function results from the physiology laboratory than those of the gold-standard method. (4) Conclusions: The automated cyst segmentation is a competent replacement for the gold-standard semi-automated process. It is a solution for saving time and labor in clinical studies of lymphangioleiomyomatosis that may involve large numbers of chest CT scans from diverse scanner platforms and protocols.
RESUMEN
Lymphangioleiomyomatosis (LAM) is a multisystem disease affecting primarily women, characterised in the lung by proliferation of LAM cells, abnormal smooth muscle-like cells with dysfunctional tuberous sclerosis complex genes. This dysfunction results in activation of mechanistic target of rapamycin (mTOR), leading to LAM cell proliferation. Sirolimus (rapamycin) is the only United States Food and Drug Administration-approved treatment for pulmonary LAM, resulting in decreased LAM cell growth/size and stabilised lung function [1].
RESUMEN
Tuberous sclerosis complex (TSC) is a neurogenetic disorder due to loss-of-function TSC1 or TSC2 variants, characterized by tumors affecting multiple organs, including skin, brain, heart, lung, and kidney. Mosaicism for TSC1 or TSC2 variants occurs in 10%-15% of individuals diagnosed with TSC. Here, we report comprehensive characterization of TSC mosaicism by using massively parallel sequencing (MPS) of 330 TSC samples from a variety of tissues and fluids from a cohort of 95 individuals with mosaic TSC. TSC1 variants in individuals with mosaic TSC are much less common (9%) than in germline TSC overall (26%) (p < 0.0001). The mosaic variant allele frequency (VAF) is significantly higher in TSC1 than in TSC2, in both blood and saliva (median VAF: TSC1, 4.91%; TSC2, 1.93%; p = 0.036) and facial angiofibromas (median VAF: TSC1, 7.7%; TSC2 3.7%; p = 0.004), while the number of TSC clinical features in individuals with TSC1 and TSC2 mosaicism was similar. The distribution of mosaic variants across TSC1 and TSC2 is similar to that for pathogenic germline variants in general TSC. The systemic mosaic variant was not present in blood in 14 of 76 (18%) individuals with TSC, highlighting the value of analysis of multiple samples from each individual. A detailed comparison revealed that nearly all TSC clinical features are less common in individuals with mosaic versus germline TSC. A large number of previously unreported TSC1 and TSC2 variants, including intronic and large rearrangements (n = 11), were also identified.
Asunto(s)
Esclerosis Tuberosa , Proteínas Supresoras de Tumor , Humanos , Proteínas Supresoras de Tumor/genética , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Mutación , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , FenotipoRESUMEN
Novel drug targets are identified in lymphangioleiomyomatosis (LAM), a rare disease in women. These targets focus on uterine transcription factors necessary for LAM cell survival.
Asunto(s)
Neoplasias Pulmonares , Linfangioleiomiomatosis , Femenino , Humanos , Enfermedades Raras , Supervivencia Celular , Pulmón/metabolismo , Linfangioleiomiomatosis/tratamiento farmacológico , Linfangioleiomiomatosis/metabolismoRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that resulted in more than 6-million deaths worldwide. The virus encodes several non-structural proteins (Nsps) that contain elements capable of disrupting cellular processes. Among these Nsp proteins, Nsp3 contains macrodomains, e.g., Mac1, Mac2, Mac3, with potential effects on host cells. Mac1 has been shown to increase SARS-CoV-2 virulence and disrupt ADP-ribosylation pathways in mammalian cells. ADP-ribosylation results from the transfer of the ADP-ribose moiety of NAD + to various acceptors, e.g., proteins, DNA, RNA, contributing on a cell's biological processes. ADP-ribosylation is the mechanism of action of bacterial toxins, e.g., Pseudomonas toxins, diphtheria toxin that disrupt protein biosynthetic and signaling pathways. On the other hand, some viral macrodomains cleavage ADP-ribose-acceptor bond, generating free ADP-ribose. By this reaction, the macrodomain-containing proteins interfere ADP-ribose homeostasis in host cells. Here, we examined potential hydrolytic activities of SARS-CoV-2 Mac1, 2, and 3 on substrates containing ADP-ribose. Mac1 cleaved α-NAD + , but not ß-NAD + , consistent with stereospecificity at the C-1" bond. In contrast to ARH1 and ARH3, Mac1 did not require Mg 2+ for optimal activity. Mac1 also hydrolyzed O -acetyl-ADP-ribose and ADP-ribose-1"-phosphat, but not Mac2 and Mac3. However, Mac1 did not cleave α-ADP-ribose-(arginine) and ADP-ribose-(serine)-histone H3 peptide, suggesting that Mac1 hydrolyzes ADP-ribose attached to O- and N-linked functional groups, with specificity at the catalytic site in the ADP-ribose moiety. We conclude that SARS-CoV-2 Mac1 may exert anti-viral activity by reversing host-mediated ADP-ribosylation. New insights on Nsp3 activities may shed light on potential SARS-CoV-2 therapeutic targets. IMPORTANCE: SARS-CoV-2, the virus responsible for COVID-19, encodes 3 macrodomain-containing proteins, e.g., Mac1, Mac2, Mac3, within non-structural proteins 3 (Nsp3). Mac1 was shown previously to hydrolyze ADP-ribose-phosphate. Inactivation of Mac1 reduced viral proliferation. Here we report that Mac1, but not Mac2 and Mac3, has multiple activities, i.e., Mac1 hydrolyzed. α-NAD + and O -acetyl-ADP-ribose. However, Mac1 did not hydrolyze ß-NAD + , ADP-ribose-serine on a histone 3 peptide (aa1-21), and ADP-ribose-arginine, exhibiting substrate selectivity. These data suggest that Mac1 may have multi-function as a α-NAD + consumer for viral replication and a disruptor of host-mediated ADP-ribosylation pathways. Understanding Mac1's mechanisms of action is important to provide possible therapeutic targets for COVID-19.
RESUMEN
Aims: Patients with ADP-ribose-acceptor hydrolase 3 ( ARH3 ) deficiency exhibit stress-induced childhood-onset neurodegeneration with ataxia and seizures (CONDSIAS). ARH3 degrades protein-linked poly(ADP- ribose) (PAR) synthesized by poly(ADP-ribose)polymerase (PARP)-1 during oxidative stress, leading to cleavage of the ADP-ribose linked to protein. ARH3 deficiency leads to excess accumulation of PAR, resulting in PAR-dependent cell death or parthanatos. Approximately one-third of patients with homozygous mutant ARH3 die from cardiac arrest, which has been described as neurogenic, suggesting that ARH3 may play an important role in maintaining myocardial function. To address this question, cardiac function was monitored in Arh3 -knockout (KO) and - heterozygous (HT) mice. Methods and results: Arh3 -KO male mice displayed cardiac hypertrophy by histopathology and decreased cardiac contractility assessed by MRI. In addition, both genders of Arh3 -KO and -HT mice showed decreased cardiac contractility by dobutamine stress test assessed by echocardiography. A direct role of ARH3 on myocardial function was seen with a Langendorff-perfused isolated heart model . Arh3 -KO male mouse hearts showed decreased post-ischemic rate pressure products, increased size of ischemia-reperfusion (IR) infarcts, and elevated PAR levels. Consistently, in vivo IR injury showed enhanced infarct size in Arh3 -KO mice in both genders. In addition, Arh3 -HT male mice showed increased size of in vivo IR infarcts. Treatment with an FDA-approved PARP inhibitor, rucaparib, improved cardiac contractility during dobutamine-induced stress and exhibited reduced size of in vivo IR infarcts. To understand better the role of ARH3, CRISPR-Cas9 was used to generate different Arh3 genotypes of myoblasts and myotubes. Incubation with H2O2 decreased viability of Arh3 -KO and -HT myoblasts and myotubes, resulting in PAR-dependent cell death that was reduced by PARP inhibitors or by transfection with the Arh3 gene. Conclusion: ARH3 regulates PAR homeostasis in myocardium to preserve function and protect against oxidative stress; PARP inhibitors reduce the myocardial dysfunction seen with Arh3 mutations.
RESUMEN
Arginine-specific mono-ADP-ribosylation is a reversible post-translational modification; arginine-specific, cholera toxin-like mono-ADP-ribosyltransferases (ARTCs) transfer ADP-ribose from NAD + to arginine, followed by cleavage of ADP-ribose-(arginine)protein bond by ADP-ribosylarginine hydrolase 1 (ARH1), generating unmodified (arginine)protein. ARTC1 has been shown to enhance tumorigenicity as does Arh1 deficiency. In this study, Artc1 -KO and Artc1/Arh1 -double-KO mice showed decreased spontaneous tumorigenesis and increased age-dependent, multi-organ inflammation with upregulation of pro-inflammatory cytokine TNF- α . In a xenograft model using tumorigenic Arh1 -KO mouse embryonic fibroblasts (MEFs), tumorigenicity was decreased in Artc1 -KO and heterozygous recipient mice, with tumor infiltration by CD8 + T cells and macrophages, leading to necroptosis, suggesting that ARTC1 promotes the tumor microenvironment. Furthermore, Artc1/Arh1 -double-KO MEFs showed decreased tumorigenesis in nude mice, showing that tumor cells as well as tumor microenvironment require ARTC1. By echocardiography and MRI, Artc1 -KO and heterozygous mice showed male-specific, reduced myocardial contractility. Furthermore, Artc1 -KO male hearts exhibited enhanced susceptibility to myocardial ischemia-reperfusion-induced injury with increased receptor-interacting protein kinase 3 (RIP3) protein levels compared to WT mice, suggesting that ARTC1 suppresses necroptosis. Overall survival rate of Artc1 -KO was less than their Artc1 -WT counterparts, primarily due to enhanced immune response and inflammation. Thus, anti-ARTC1 agents may reduce tumorigenesis but may increase multi-organ inflammation and decrease cardiac contractility.
RESUMEN
Skin findings can be critical to determining whether a patient with lymphangioleiomyomatosis (LAM), a progressive pulmonary disease that predominantly affects adult women, has sporadic LAM or LAM in association with tuberous sclerosis complex (TSC). Three individuals with LAM underwent evaluation for TSC-associated mucocutaneous and internal findings. We used our previously published algorithm to confirm the clinical suspicion for mosaicism and guide the selection of tissue specimens and genetic workup. Next-generation sequencing of cutaneous findings was used to confirm clinical suspicion for mosaic TSC in individuals with LAM. Two individuals previously thought to have sporadic LAM were diagnosed with mosaic TSC-associated LAM upon next-generation sequencing of unilateral angiofibromas in one and an unusual cutaneous hamartoma in the other. A third individual, diagnosed with TSC in childhood, was found to have a mosaic pathogenic variant in TSC2 in cutaneous tissue from a digit with macrodactyly. Accurate diagnosis of mosaic TSC-associated LAM may require enhanced genetic testing and is important because of the implications regarding surveillance, prognosis, and risk of transmission to offspring.