Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Cardiol Heart Vasc ; 51: 101373, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38464963

RESUMEN

Background: Brugada syndrome (BrS) is characterized by dynamic ST-elevations in right precordial leads and increased risk of ventricular fibrillation and sudden cardiac death. As the mechanism underlying ST-elevation and malignant arrhythmias is controversial computational modeling can aid in exploring the disease mechanism. Thus we aim to test the main competing hypotheses ('delayed depolarization' vs. 'early repolarization') of BrS in a whole-heart computational model. Methods: In a 3D whole-heart computational model, delayed epicardial RVOT activation with local conduction delay was simulated by reducing conductivity in the epicardial RVOT. Early repolarization was simulated by instead increasing the transient outward potassium current (Ito) in the same region. Additionally, a reduction in the fast sodium current (INa) was incorporated in both models. Results: Delayed depolarization with local conduction delay in the computational model resulted in coved-type ST-elevation with negative T-waves in the precordial surface ECG leads. 'Saddleback'-shaped ST-elevation was obtained with reduced substrate extent or thickness. Increased Ito simulations showed early repolarization in the RVOT with a descending but not coved-type ST-elevation. Reduced INa did not show a significant effect on ECG morphology. Conclusions: In this whole-heart BrS computational model of both major hypotheses, realistic coved-type ECG resulted only from delayed epicardial RVOT depolarization with local conduction delay but not early repolarizing ion channel modifications. These simulations provide further support for the depolarization hypothesis as electrophysiological mechanism underlying BrS.

2.
J Physiol ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37082830

RESUMEN

Electromechanical reciprocity - comprising electro-mechanical (EMC) and mechano-electric coupling (MEC) - provides cardiac adaptation to changing physiological demands. Understanding electromechanical reciprocity and its impact on function and heterogeneity in pathological conditions - such as (drug-induced) acquired long QT syndrome (aLQTS) - might lead to novel insights in arrhythmogenesis. Our aim is to investigate how electrical changes impact on mechanical function (EMC) and vice versa (MEC) under physiological conditions and in aLQTS. To measure regional differences in EMC and MEC in vivo, we used tissue phase mapping cardiac MRI and a 24-lead ECG vest in healthy (control) and IKr -blocker E-4031-induced aLQTS rabbit hearts. MEC was studied in vivo by acutely increasing cardiac preload, and ex vivo by using voltage optical mapping (OM) in beating hearts at different preloads. In aLQTS, electrical repolarization (heart rate corrected RT-interval, RTn370) was prolonged compared to control (P < 0.0001) with increased spatial and temporal RT heterogeneity (P < 0.01). Changing electrical function (in aLQTS) resulted in significantly reduced diastolic mechanical function and prolonged contraction duration (EMC), causing increased apico-basal mechanical heterogeneity. Increased preload acutely prolonged RTn370 in both control and aLQTS hearts (MEC). This effect was more pronounced in aLQTS (P < 0.0001). Additionally, regional RT-dispersion increased in aLQTS. Motion-correction allowed us to determine APD-prolongation in beating aLQTS hearts, but limited motion correction accuracy upon preload-changes prevented a clear analysis of MEC ex vivo. Mechano-induced RT-prolongation and increased heterogeneity were more pronounced in aLQTS than in healthy hearts. Acute MEC effects may play an additional role in LQT-related arrhythmogenesis, warranting further mechanistic investigations. KEY POINTS: Electromechanical reciprocity comprising excitation-contraction coupling (EMC) and mechano-electric feedback loops (MEC) is essential for physiological cardiac function. Alterations in electrical and/or mechanical heterogeneity are known to have potentially pro-arrhythmic effects. In this study, we aimed to investigate how electrical changes impact on the mechanical function (EMC) and vice versa (MEC) both under physiological conditions (control) and in acquired long QT syndrome (aLQTS). We show that changing the electrical function (in aLQTS) results in significantly altered mechanical heterogeneity via EMC and, vice versa, that increasing the preload acutely prolongs repolarization duration and increases electrical heterogeneity, particularly in aLQTS as compared to control. Our results substantiate the hypothesis that LQTS is an ?electro-mechanical', rather than a 'purely electrical', disease and suggest that acute MEC effects may play an additional role in LQT-related arrhythmogenesis.

3.
PLoS One ; 17(6): e0270559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35771854

RESUMEN

Computational modeling of electrophysiological properties of the rabbit heart is a commonly used way to enhance and/or complement findings from classic lab work on single cell or tissue levels. Yet, thus far, there was no possibility to extend the scope to include the resulting body surface potentials as a way of validation or to investigate the effect of certain pathologies. Based on CT imaging, we developed the first openly available computational geometrical model not only of the whole heart but also the complete torso of the rabbit. Additionally, we fabricated a 32-lead ECG-vest to record body surface potential signals of the aforementioned rabbit. Based on the developed geometrical model and the measured signals, we then optimized the activation sequence of the ventricles, recreating the functionality of the Purkinje network, and we investigated different apico-basal and transmural gradients in action potential duration. Optimization of the activation sequence resulted in an average root mean square error between measured and simulated signal of 0.074 mV/ms for all leads. The best-fit T-Wave, compared to measured data (0.038 mV/ms), resulted from incorporating an action potential duration gradient from base to apex with a respective shortening of 20 ms and a transmural gradient with a shortening of 15 ms from endocardium to epicardium. By making our model and measured data openly available, we hope to give other researchers the opportunity to verify their research, as well as to create the possibility to investigate the impact of electrophysiological alterations on body surface signals for translational research.


Asunto(s)
Endocardio , Ventrículos Cardíacos , Potenciales de Acción/fisiología , Animales , Electrocardiografía , Endocardio/fisiología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/metabolismo , Pericardio/fisiología , Conejos
4.
Int J Cardiol Heart Vasc ; 40: 101001, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35391783

RESUMEN

Background: Oxytocin is used therapeutically in psychiatric patients. Many of these also receive anti-depressant or anti-psychotic drugs causing acquired long-QT-syndrome (LQTS) by blocking HERG/IKr. We previously identified an oxytocin-induced QT-prolongation in LQT2 rabbits, indicating potential harmful effects of combined therapy. We thus aimed to analyze the effects of dual therapy with oxytocin and fluoxetine/risperidone on cardiac repolarization. Methods: Effects of risperidone, fluoxetine and oxytocin on QT/QTc, short-term variability (STV) of QT, and APD were assessed in rabbits using in vivo ECG and ex vivo monophasic AP recordings in Langendorff-perfused hearts. Underlying mechanisms were assessed using patch clamp in isolated cardiomyocytes. Results: Oxytocin, fluoxetine and risperidone prolonged QTc and APD in whole hearts. The combination of fluoxetine + oxytocin resulted in further QTc- and APD-prolongation, risperidone + oxytocin tended to increase QTc and APD compared to monotherapy. Temporal QT instability, STVQTc was increased by oxytocin, fluoxetine / fluoxetine + oxytocin and risperidone / risperidone + oxytocin. Similar APD-prolonging effects were confirmed in isolated cardiomyocytes due to differential effects of the compounds on repolarizing ion currents: Oxytocin reduced IKs, fluoxetine and risperidone reduced IKr, resulting in additive effects on IKtotal-tail. In addition, oxytocin reduced IK1, further reducing the repolarization reserve. Conclusion: Oxytocin, risperidone and fluoxetine prolong QTc / APD. Combined treatment further prolongs QTc/APD due to differential effects on IKs and IK1 (block by oxytocin) and IKr (block by risperidone and fluoxetine), leading to pronounced impairment of repolarization reserve. Oxytocin should be used with caution in patients in the context of acquired LQTS.

5.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498651

RESUMEN

KCNQ1 encodes the voltage-gated potassium (Kv) channel KCNQ1, also known as KvLQT1 or Kv7.1. Together with its ß-subunit KCNE1, also denoted as minK, this channel generates the slowly activating cardiac delayed rectifier current IKs, which is a key regulator of the heart rate dependent adaptation of the cardiac action potential duration (APD). Loss-of-function mutations in KCNQ1 cause congenital long QT1 (LQT1) syndrome, characterized by a delayed cardiac repolarization and a prolonged QT interval in the surface electrocardiogram. Autosomal dominant loss-of-function mutations in KCNQ1 result in long QT syndrome, called Romano-Ward Syndrome (RWS), while autosomal recessive mutations lead to Jervell and Lange-Nielsen syndrome (JLNS), associated with deafness. Here, we identified a homozygous KCNQ1 mutation, c.1892_1893insC (p.P631fs*20), in a patient with an isolated LQT syndrome (LQTS) without hearing loss. Nevertheless, the inheritance trait is autosomal recessive, with heterozygous family members being asymptomatic. The results of the electrophysiological characterization of the mutant, using voltage-clamp recordings in Xenopus laevis oocytes, are in agreement with an autosomal recessive disorder, since the IKs reduction was only observed in homomeric mutants, but not in heteromeric IKs channel complexes containing wild-type channel subunits. We found that KCNE1 rescues the KCNQ1 loss-of-function in mutant IKs channel complexes when they contain wild-type KCNQ1 subunits, as found in the heterozygous state. Action potential modellings confirmed that the recessive c.1892_1893insC LQT1 mutation only affects the APD of homozygous mutation carriers. Thus, our study provides the molecular mechanism for an atypical autosomal recessive LQT trait that lacks hearing impairment.


Asunto(s)
Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Síndrome de Romano-Ward/genética , Potenciales de Acción , Animales , Sordera/genética , Femenino , Genes Recesivos , Heterocigoto , Homocigoto , Humanos , Masculino , Mutación , Oocitos/fisiología , Técnicas de Placa-Clamp , Linaje , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Síndrome de Romano-Ward/etiología , Xenopus laevis
6.
Front Physiol ; 12: 778872, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975532

RESUMEN

The ECG is one of the most commonly used non-invasive tools to gain insights into the electrical functioning of the heart. It has been crucial as a foundation in the creation and validation of in silico models describing the underlying electrophysiological processes. However, so far, the contraction of the heart and its influences on the ECG have mainly been overlooked in in silico models. As the heart contracts and moves, so do the electrical sources within the heart responsible for the signal on the body surface, thus potentially altering the ECG. To illuminate these aspects, we developed a human 4-chamber electro-mechanically coupled whole heart in silico model and embedded it within a torso model. Our model faithfully reproduces measured 12-lead ECG traces, circulatory characteristics, as well as physiological ventricular rotation and atrioventricular valve plane displacement. We compare our dynamic model to three non-deforming ones in terms of standard clinically used ECG leads (Einthoven and Wilson) and body surface potential maps (BSPM). The non-deforming models consider the heart at its ventricular end-diastatic, end-diastolic and end-systolic states. The standard leads show negligible differences during P-Wave and QRS-Complex, yet during T-Wave the leads closest to the heart show prominent differences in amplitude. When looking at the BSPM, there are no notable differences during the P-Wave, but effects of cardiac motion can be observed already during the QRS-Complex, increasing further during the T-Wave. We conclude that for the modeling of activation (P-Wave/QRS-Complex), the associated effort of simulating a complete electro-mechanical approach is not worth the computational cost. But when looking at ventricular repolarization (T-Wave) in standard leads as well as BSPM, there are areas where the signal can be influenced by cardiac motion of the heart to an extent that should not be ignored.

7.
J Vis Exp ; (157)2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32202521

RESUMEN

Over the past two decades, optogenetic tools have been established as potent means to modulate cell-type specific activity in excitable tissues, including the heart. While Channelrhodopsin-2 (ChR2) is a common tool to depolarize the membrane potential in cardiomyocytes (CM), potentially eliciting action potentials (AP), an effective tool for reliable silencing of CM activity has been missing. It has been suggested to use anion channelrhodopsins (ACR) for optogenetic inhibition. Here, we describe a protocol to assess the effects of activating the natural ACR GtACR1 from Guillardia theta in cultured rabbit CM. Primary readouts are electrophysiological patch-clamp recordings and optical tracking of CM contractions, both performed while applying different patterns of light stimulation. The protocol includes CM isolation from rabbit heart, seeding and culturing of the cells for up to 4 days, transduction via adenovirus coding for the light-gated chloride channel, preparation of patch-clamp and carbon fiber setups, data collection and analysis. Using the patch-clamp technique in whole-cell configuration allows one to record light-activated currents (in voltage-clamp mode, V-clamp) and AP (current-clamp mode, I-clamp) in real time. In addition to patch-clamp experiments, we conduct contractility measurements for functional assessment of CM activity without disturbing the intracellular milieu. To do so, cells are mechanically preloaded using carbon fibers and contractions are recorded by tracking changes in sarcomere length and carbon fiber distance. Data analysis includes assessment of AP duration from I-clamp recordings, peak currents from V-clamp recordings and force calculation from carbon fiber measurements. The described protocol can be applied to the testing of biophysical effects of different optogenetic actuators on CM activity, a prerequisite for the development of a mechanistic understanding of optogenetic experiments in cardiac tissue and whole hearts.


Asunto(s)
Electrofisiología/métodos , Miocitos Cardíacos/citología , Optogenética , Potenciales de Acción , Animales , Calibración , Fibra de Carbono , Separación Celular , Células Cultivadas , Channelrhodopsins/metabolismo , Medios de Cultivo , Análisis de Datos , Luz , Contracción Miocárdica , Técnicas de Placa-Clamp , Perfusión , Conejos
8.
Int J Cardiol ; 274: 144-151, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30017522

RESUMEN

BACKGROUND: Prolonged repolarization is the hallmark of long QT syndrome (LQTS), which is associated with subclinical mechanical dysfunction. We aimed at elucidating mechanical cardiac function in LQTS type 1 (loss of IKs) and its modification upon further prolongation of the action potential (AP) by IKr-blockade (E-4031). METHODS: Transgenic LQT1 and wild type (WT) rabbits (n = 12/10) were subjected to tissue phase mapping MRI, ECG, and epicardial AP recording. Protein and mRNA levels of ion channels and Ca2+ handling proteins (n = 4/4) were determined. In silico single cell AP and tension modeling was performed. RESULTS: At baseline, QT intervals were longer in LQT1 compared to WT rabbits, but baseline systolic and diastolic myocardial peak velocities were similar in LQT1 and WT. E-4031 prolonged QT more pronouncedly in LQT1. Additionally, E-4031 increased systolic and decreased diastolic peak velocities more markedly in LQT1 - unmasking systolic and diastolic LQT1-specific mechanical alterations. E-4031-induced alterations of diastolic peak velocities correlated with the extent of QT prolongation. CONCLUSION: While baseline mechanical function is normal in LQT1 despite a distinct QT prolongation, further prolongation of repolarization by IKr-blocker E-4031 unmasks mechanical differences between LQT1 and WT with enhanced systolic and impaired diastolic function only in LQT1. These data indicate an importance of the extent of QT prolongation and the contribution of different impaired ion currents for conveying mechanical dysfunction.


Asunto(s)
Potenciales de Acción/fisiología , Electrocardiografía/métodos , Contracción Miocárdica/fisiología , Síndrome de Romano-Ward/fisiopatología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Antiarrítmicos/farmacología , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Imagen por Resonancia Cinemagnética , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Piperidinas/farmacología , Piridinas/farmacología , Conejos , Síndrome de Romano-Ward/diagnóstico , Síndrome de Romano-Ward/tratamiento farmacológico
9.
PLoS Comput Biol ; 14(10): e1006438, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30303952

RESUMEN

The cardiac muscarinic receptor (M2R) regulates heart rate, in part, by modulating the acetylcholine (ACh) activated K+ current IK,ACh through dissociation of G-proteins, that in turn activate KACh channels. Recently, M2Rs were noted to exhibit intrinsic voltage sensitivity, i.e. their affinity for ligands varies in a voltage dependent manner. The voltage sensitivity of M2R implies that the affinity for ACh (and thus the ACh effect) varies throughout the time course of a cardiac electrical cycle. The aim of this study was to investigate the contribution of M2R voltage sensitivity to the rate and shape of the human sinus node action potentials in physiological and pathophysiological conditions. We developed a Markovian model of the IK,ACh modulation by voltage and integrated it into a computational model of human sinus node. We performed simulations with the integrated model varying ACh concentration and voltage sensitivity. Low ACh exerted a larger effect on IK,ACh at hyperpolarized versus depolarized membrane voltages. This led to a slowing of the pacemaker rate due to an attenuated slope of phase 4 depolarization with only marginal effect on action potential duration and amplitude. We also simulated the theoretical effects of genetic variants that alter the voltage sensitivity of M2R. Modest negative shifts in voltage sensitivity, predicted to increase the affinity of the receptor for ACh, slowed the rate of phase 4 depolarization and slowed heart rate, while modest positive shifts increased heart rate. These simulations support our hypothesis that altered M2R voltage sensitivity contributes to disease and provide a novel mechanistic foundation to study clinical disorders such as atrial fibrillation and inappropriate sinus tachycardia.


Asunto(s)
Modelos Cardiovasculares , Receptor Muscarínico M2/fisiología , Nodo Sinoatrial/fisiología , Acetilcolina/metabolismo , Biología Computacional , Humanos , Cadenas de Markov
10.
Front Physiol ; 9: 1806, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618818

RESUMEN

During the last decade, optogenetics has emerged as a paradigm-shifting technique to monitor and steer the behavior of specific cell types in excitable tissues, including the heart. Activation of cation-conducting channelrhodopsins (ChR) leads to membrane depolarization, allowing one to effectively trigger action potentials (AP) in cardiomyocytes. In contrast, the quest for optogenetic tools for hyperpolarization-induced inhibition of AP generation has remained challenging. The green-light activated ChR from Guillardia theta (GtACR1) mediates Cl--driven photocurrents that have been shown to silence AP generation in different types of neurons. It has been suggested, therefore, to be a suitable tool for inhibition of cardiomyocyte activity. Using single-cell electrophysiological recordings and contraction tracking, as well as intracellular microelectrode recordings and in vivo optical recordings of whole hearts, we find that GtACR1 activation by prolonged illumination arrests cardiac cells in a depolarized state, thus inhibiting re-excitation. In line with this, GtACR1 activation by transient light pulses elicits AP in rabbit isolated cardiomyocytes and in spontaneously beating intact hearts of zebrafish. Our results show that GtACR1 inhibition of AP generation is caused by cell depolarization. While this does not address the need for optogenetic silencing through physiological means (i.e., hyperpolarization), GtACR1 is a potentially attractive tool for activating cardiomyocytes by transient light-induced depolarization.

11.
Prog Biophys Mol Biol ; 130(Pt B): 344-355, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655649

RESUMEN

BACKGROUND: Increased electrical heterogeneity has been causatively linked to arrhythmic disorders, yet the knowledge about physiological heterogeneity remains incomplete. This study investigates regional electro-mechanical heterogeneities in rabbits, one of the key animal models for arrhythmic disorders. METHODS AND FINDINGS: 7 wild-type rabbits were examined by phase-contrast magnetic resonance imaging in vivo to assess cardiac wall movement velocities. Using a novel data-processing algorithm regional contraction-like profiles were calculated. Contraction started earlier and was longer in left ventricular (LV) apex than base. Patch clamp recordings showed longer action potentials (AP) in LV apex compared to the base of LV, septum, and right ventricle. Western blots of cardiac ion channels and calcium handling proteins showed lower expression of Cav1.2, KvLQT1, Kv1.4, NCX and Phospholamban in LV apex vs. base. A single-cell in silico model integrating the quantitative regional differences in ion channels reproduced a longer contraction and longer AP in apex vs. base. CONCLUSIONS: Apico-basal electro-mechanical heterogeneity is physiologically present in the healthy rabbit heart. An apico-basal electro-mechanical gradient exists with longer APD and contraction duration in the apex and associated regionally heterogeneous expression of five key proteins. This pattern of apical mechanical dominance probably serves to increase pumping efficiency.


Asunto(s)
Fenómenos Electrofisiológicos , Corazón/fisiología , Fenómenos Mecánicos , Animales , Fenómenos Biomecánicos , Simulación por Computador , Modelos Biológicos , Miocardio/metabolismo , Conejos
12.
Pflugers Arch ; 468(8): 1375-87, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27287068

RESUMEN

SCN5A encodes for the α-subunit of the cardiac voltage-gated sodium channel Nav1.5. Gain-of-function mutations in SCN5A are related to congenital long QT syndrome (LQTS3) characterized by delayed cardiac repolarization, leading to a prolonged QT interval in the ECG. Loss-of-function mutations in SCN5A are related to Brugada syndrome (BrS), characterized by an ST-segment elevation in the right precordial leads (V1-V3). The aim of this study was the characterization of a large set of novel SCN5A variants found in patients with different cardiac phenotypes, mainly LQTS and BrS. SCN5A variants of 13 families were functionally characterized in Xenopus laevis oocytes using the two-electrode voltage-clamp technique. We found in most of the cases, but not all, that the electrophysiology of the variants correlated with the clinically diagnosed phenotype. A susceptibility to develop LQTS can be suggested in patients carrying the variants S216L, K480N, A572D, F816Y, and G983D. However, taking the phenotype into account, the presence of the variants in genomic data bases, the mutational segregation, combined with our in vitro and in silico experiments, the variants S216L, S262G, K480N, A572D, F816Y, G983D, and T1526P remain as variants of unknown significance. However, the SCN5A variants R568H and A993T can be classified as pathogenic LQTS3 causing mutations, while R222stop and R2012H are novel BrS causing mutations.


Asunto(s)
Fenómenos Electrofisiológicos/genética , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Animales , Síndrome de Brugada/genética , Trastorno del Sistema de Conducción Cardíaco , Sistema de Conducción Cardíaco/metabolismo , Humanos , Masculino , Oocitos/metabolismo , Fenotipo , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA