Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Infect Dis ; 24(1): 593, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886629

RESUMEN

BACKGROUND: Acinetobacter baumannii resistant strains lead to increased mortality, treatment costs, and an increase in the length of hospitalization. Nowadays, nanoparticles are considered a substitute for antibiotics. This study aimed to determine the MIC of Silver (Ag) and Zinc Oxide (ZnO) Nanoparticles (NPs) on Biofilm-Producing Acinetobacter baumannii and determine the relationship between MIC and frequency of efflux pump genes in cutaneous specimens in Shiraz, Southwest Iran in 2021-2022. METHODS: In this study, specimens were collected from April 2021 to June 2022 at Namazi and Faqihi Hospitals in Shiraz. Investigation of biofilm production in multidrug resistance (MDR) isolates was done by the microtiter plate method. Synthesized nanoparticles were characterized by UV-vis spectrum, X-ray diffraction (XRD), and electron microscopy. The MIC of AgNPs and ZnONPs for isolates was done using the method described in the CLSI guideline (2018). The antibacterial effect of MIC of NPs on inanimate objects was done by colony counts. The prevalence of efflux pump genes (adeR, adeC, adeA, abeM, adeK, adeI) was also investigated by PCR technique. RESULTS: The highest ceftriaxone resistance (68%) and lowest colistin resistance (7%) were identified. 57% of isolates were MDR. In addition, 71.9% could produce biofilm and 28.1% of isolates could not produce biofilm. The average size of AgNPs and ZnONPs in the present study is 48 and < 70 nm, respectively. The nanoparticles were spherical. The MIC and the MBC of the ZnONPs were in the range of 125 to 250 µg/mL respectively. Also, for AgNPs, the MIC and the MBC were in the range of 62.5 to 250 µg/ml, respectively. AbeM gene had the highest frequency and the AdeK gene had the lowest frequency. Statistical analysis showed that there is a relationship between the frequency of adeA, adeC, and adeM genes with the MIC of AgNPs and ZnONPs. CONCLUSION: According to the results of the present study, inanimate objects such as scalpels in contact with AgNPs (6000 µg/ml for 240 min) or ZnONPs (5000 µg/ml for 120 min) can be free of biofilm producing Acinetobacter baumannii  with efflux pump genes.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Óxido de Zinc , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Biopelículas/efectos de los fármacos , Irán , Antibacterianos/farmacología , Plata/farmacología , Óxido de Zinc/farmacología , Óxido de Zinc/química , Humanos , Infecciones por Acinetobacter/microbiología , Nanopartículas del Metal/química , Adulto , Masculino , Femenino , Persona de Mediana Edad , Adolescente , Adulto Joven , Niño , Anciano , Preescolar , Nanopartículas/química
2.
Cell Commun Signal ; 22(1): 126, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360719

RESUMEN

Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.


Asunto(s)
Anemia , COVID-19 , Neoplasias Hematológicas , Humanos , SARS-CoV-2 , Neoplasias Hematológicas/complicaciones , Neoplasias Hematológicas/epidemiología , Neoplasias Hematológicas/terapia , Factores de Riesgo , Anemia/complicaciones , Anemia/epidemiología , Anemia/terapia
3.
Immun Inflamm Dis ; 12(1): e1117, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38270309

RESUMEN

INTRODUCTION: Toxoplasma gondii infection is considered as one of the most important opportunistic infections and cause of death in HIV patients. METHODS: In this cross-sectional study, 334 HIV positive patients were included. The molecular test was performed by the restriction fragment length polymorphism-polymerase chain reaction method. Allelic frequency, haplotype analyses, and linkage disequilibrium were calculated. The odds ratio was calculated. The linear regression model was used to analysis of interleukin (IL)-17A, IL-17F, and IL-6 single-nucleotide polymorphism genotypes in HIV patients with and without toxoplasmosis. RESULTS: In total, 95 tested'patients (28.4%) were positive for toxoplasmosis. The risk of toxoplasma infection in the current study did not correlate with IL-17 and IL-6 polymorphism and the risk of contracting toxoplasma was also not significantly correlated in this study. There was no association between the frequency of alleles and the risk of toxoplasma infection in IL-17 haplotype analysis. CONCLUSION: The findings of this study revealed that there were significant differences in the serum levels of IL-6 and IL-17A, but not IL-17F, between the case and control groups in various genetic models. However, these polymorphisms did not show a significant relationship with toxoplasma infection in HIV-positive patients. This study represents the first investigation in Iran to explore the role of IL-6 and IL-17 polymorphisms in toxoplasma infection among HIV-positive patients.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Interleucina-17 , Interleucina-6 , Toxoplasmosis , Humanos , Estudios Transversales , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Interleucina-17/genética , Interleucina-6/genética , Irán/epidemiología , Polimorfismo de Nucleótido Simple , Toxoplasmosis/genética
4.
Braz. j. infect. dis ; 16(2): 129-135, May-Apr. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-622732

RESUMEN

BACKGROUND: Due to the emergence of drug resistance in herpes simplex virus type 1 (HSV-1), researchers are trying to find other methods for treating herpes simplex virus type 1 infections. Probiotic bacteria are effective in macrophage activation and may have antiviral activities. OBJECTIVE: This study aimed at verifying the direct effect of Lactobacillus rhamnosus, a probiotic bacterium, in comparison with Escherichia coli, a non-probiotic one, on HSV-1 infection, and determining its effect on macrophage activation for in vitro elimination of HSV-1 infection. METHODS: The above bacteria were introduced into HSV-1 infected Vero cells, and their effects were examined using both MTT and plaque assay. To determine macrophage activation against in vitro HSV-1 infection, J774 cells were exposed to these bacteria; then, macrophage viability was examined with the MTT method, and tumor necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), and nitric oxide (NO) assessments were performed using the ELISA method. RESULTS: A significant increased viability of macrophages was observed (p < 0.05) in the presence of Lactobacillus rhamnosus before and after HSV-1 infection when compared with Escherichia coli as a non-probiotic bacterium. However, tumor necrosis factor α concentration produced by Escherichia coli-treated J774 cells was significantly higher than Lactobacillus rhamnosus-treated J774 cells (p < 0.05). interferon-gamma and NO production were not different in the groups treated with Escherichia coli or with Lactobacillus rhamnosus. CONCLUSION: The results of this study indicate that Lactobacillus rhamnosus enhances macrophage viability for HSV-1 elimination and activation against HSV-1 more effectively, when compared with non-probiotic Escherichia coli. it also seems that receptor occupation of macrophage sites decreases HSV-1 infectivity by both of the studied bacteria.


Asunto(s)
Humanos , Escherichia coli/fisiología , Herpesvirus Humano 1 , Lacticaseibacillus rhamnosus/química , Probióticos/farmacología , Línea Celular , Interferón gamma/análisis , Lacticaseibacillus rhamnosus/fisiología , Activación de Macrófagos/efectos de los fármacos , Óxido Nítrico/análisis , Factor de Necrosis Tumoral alfa/análisis , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA