Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Curr Biol ; 33(20): R1047-R1049, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37875077

RESUMEN

Two new studies shed light on the intricacies of Caenorhabditis elegans embryo patterning, revealing how the conserved interaction and crosstalk of PAR proteins are adapted to perceive distinct cues, ultimately shaping unique asymmetries in form and function.


Asunto(s)
Proteínas de Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular , Caenorhabditis elegans/metabolismo , Embrión no Mamífero/metabolismo
2.
Cell Rep ; 36(1): 109326, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34233197

RESUMEN

Coordination between cell differentiation and proliferation during development requires the balance between asymmetric and symmetric modes of cell division. However, the cellular intrinsic cue underlying the choice between these two division modes remains elusive. Here, we show evidence in Caenorhabditis elegans that the invariable lineage of the division modes is specified by the balance between antagonizing complexes of partitioning-defective (PAR) proteins. By uncoupling unequal inheritance of PAR proteins from that of fate determinants during cell division, we demonstrate that changes in the balance between PAR-2 and PAR-6 can be sufficient to re-program the division modes from symmetric to asymmetric and vice versa in two daughter cells. The division mode adopted occurs independently of asymmetry in cytoplasmic fate determinants, cell-size asymmetry, and cell-cycle asynchrony between sister cells. We propose that the balance between PAR proteins represents an intrinsic self-organizing cue for the specification of the two division modes during development.


Asunto(s)
División Celular Asimétrica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Embrión no Mamífero/citología , Desarrollo Embrionario , Animales , Linaje de la Célula , Polaridad Celular , Simulación por Computador , Embrión no Mamífero/metabolismo , Modelos Biológicos , Cigoto/citología , Cigoto/metabolismo
3.
Semin Cell Dev Biol ; 120: 3-9, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34274213

RESUMEN

The development of complex forms of multicellular organisms depends on the spatial arrangement of cellular architecture and functions. The interior design of the cell is patterned by spatially biased distributions of molecules and biochemical reactions in the cytoplasm and/or on the plasma membrane. In recent years, a dynamic change in the cytoplasmic fluid flow has emerged as a key physical process of driving long-range transport of molecules to particular destinations within the cell. Here, recent experimental advances in the understanding of the generation of the various types of cytoplasmic flows and contributions to intracellular patterning are reviewed with a particular focus on feedback mechanisms between the mechanical properties of fluid flow and biochemical signaling during animal cell polarization.


Asunto(s)
Polaridad Celular/inmunología , Citoplasma/metabolismo , Humanos , Transducción de Señal
4.
Front Cell Dev Biol ; 8: 619869, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537308

RESUMEN

Cell polarity is the asymmetric organization of cellular components along defined axes. A key requirement for polarization is the ability of the cell to break symmetry and achieve a spatially biased organization. Despite different triggering cues in various systems, symmetry breaking (SB) usually relies on mechanochemical modulation of the actin cytoskeleton, which allows for advected movement and reorganization of cellular components. Here, the mechanisms underlying SB in Caenorhabditis elegans zygote, one of the most popular models to study cell polarity, are reviewed. A zygote initiates SB through the centrosome, which modulates mechanics of the cell cortex to establish advective flow of cortical proteins including the actin cytoskeleton and partitioning defective (PAR) proteins. The chemical signaling underlying centrosomal control of the Aurora A kinase-mediated cascade to convert the organization of the contractile actomyosin network from an apolar to polar state is also discussed.

5.
Curr Opin Cell Biol ; 62: 78-85, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31731147

RESUMEN

Understanding the development of apicobasal polarity (ABP) is a long-standing problem in biology. The molecular components involved in the development and maintenance of APB have been largely identified and are known to have ubiquitous roles across organisms. Our knowledge of the functional consequences of ABP establishment and maintenance is far less comprehensive. Recent studies using novel experimental approaches and cellular models have revealed a growing link between ABP and the genetic program of cell lineage. This mini-review describes some of the most recent advances in this new field, highlighting examples from Caenorhabditis elegans and mouse embryos, human pluripotent stem cells, and epithelial cells. We also speculate on the most interesting and challenging avenues that can be explored.


Asunto(s)
Polaridad Celular/fisiología , Células Epiteliales/metabolismo , Animales , Diferenciación Celular , Humanos , Ratones
7.
Dev Cell ; 48(5): 631-645.e6, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30861375

RESUMEN

Cell polarity is facilitated by a rearrangement of the actin cytoskeleton at the cell cortex. The program triggering the asymmetric remodeling of contractile actomyosin networks remains poorly understood. Here, we show that polarization of Caenorhabditis elegans zygotes is established through sequential downregulation of cortical actomyosin networks by the mitotic kinase, Aurora-A. Aurora-A accumulates around centrosomes to locally disrupt the actomyosin contractile activity at the proximal cortex, thereby promoting cortical flows during symmetry breaking. Aurora-A later mediates global disassembly of cortical actomyosin networks, which facilitates the initial polarization through suppression of centrosome-independent cortical flows. Translocation of Aurora-A from the cytoplasm to the cortex is sufficient to interfere with the cortical actomyosin networks independently of its roles in centrosome maturation and cell-cycle progression. We propose that Aurora-A activity serves as a centrosome-mediated cue that breaks symmetry in actomyosin contractile activity, and facilitates the initial polarization through global suppression of cortical actomyosin networks.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Centrosoma/metabolismo , Contracción Muscular/fisiología , Actomiosina/genética , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular/fisiología , Embrión no Mamífero/citología , Microtúbulos/metabolismo , Huso Acromático/genética
8.
Nat Chem Biol ; 14(10): 917-927, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30177850

RESUMEN

Cell polarity is the asymmetric compartmentalization of cellular components. An opposing gradient of partitioning-defective protein kinases, atypical protein kinase C (aPKC) and PAR-1, at the cell cortex guides diverse asymmetries in the structure of metazoan cells, but the mechanism underlying their spatial patterning remains poorly understood. Here, we show in Caenorhabditis elegans zygotes that the cortical PAR-1 gradient is patterned as a consequence of dual mechanisms: stabilization of cortical dynamics and protection from aPKC-mediated cortical exclusion. Dual control of cortical PAR-1 depends on a physical interaction with the PRBH-domain protein PAR-2. Using a reconstitution approach in heterologous cells, we demonstrate that PAR-1, PAR-2, and polarized Cdc42-PAR-6-aPKC comprise the minimal network sufficient for the establishment of an opposing cortical gradient. Our findings delineate the mechanism governing cortical polarity, in which a circuit consisting of aPKC and the PRBH-domain protein ensures the local recruitment of PAR-1 to a well-defined cortical compartment.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Polaridad Celular , Proteínas Fluorescentes Verdes/metabolismo , Lípidos/química , Mutagénesis , Fosforilación , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Interferencia de ARN
9.
J Cell Biol ; 217(3): 837-848, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29311228

RESUMEN

During cytokinesis, a signal from the central spindle that forms between the separating anaphase chromosomes promotes the accumulation of contractile ring components at the cell equator, while a signal from the centrosomal microtubule asters inhibits accumulation of contractile ring components at the cell poles. However, the molecular identity of the inhibitory signal has remained unknown. To identify molecular components of the aster-based inhibitory signal, we developed a means to monitor the removal of contractile ring proteins from the polar cortex after anaphase onset. Using this assay, we show that polar clearing is an active process that requires activation of Aurora A kinase by TPXL-1. TPXL-1 concentrates on astral microtubules coincident with polar clearing in anaphase, and its ability to recruit Aurora A and activate its kinase activity are essential for clearing. In summary, our data identify Aurora A kinase as an aster-based inhibitory signal that restricts contractile ring components to the cell equator during cytokinesis.


Asunto(s)
Anafase/fisiología , Aurora Quinasa A/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Citocinesis/fisiología , Transducción de Señal/fisiología , Animales , Aurora Quinasa A/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Activación Enzimática/fisiología , Microtúbulos/genética , Microtúbulos/metabolismo
10.
J Cell Sci ; 130(24): 4200-4212, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29113997

RESUMEN

Cell polarity involves the compartmentalization of the cell cortex. The establishment of cortical compartments arises from the spatial bias in the activity and concentration of cortical proteins. The mechanistic dissection of cell polarity requires the accurate detection of dynamic changes in cortical proteins, but the fluctuations of cell shape and the inhomogeneous distributions of cortical proteins greatly complicate the quantitative extraction of their global and local changes during cell polarization. To address these problems, we introduce an open-source software package, ImaEdge, which automates the segmentation of the cortex from time-lapse movies, and enables quantitative extraction of cortical protein intensities. We demonstrate that ImaEdge enables efficient and rigorous analysis of the dynamic evolution of cortical PAR proteins during Caenorhabditis elegans embryogenesis. It is also capable of accurate tracking of varying levels of transgene expression and discontinuous signals of the actomyosin cytoskeleton during multiple rounds of cell division. ImaEdge provides a unique resource for quantitative studies of cortical polarization, with the potential for application to many types of polarized cells.This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Caenorhabditis elegans/ultraestructura , Polaridad Celular/genética , Desarrollo Embrionario/genética , Imagen Molecular/métodos , Actomiosina/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans , Compartimento Celular/genética , Regulación del Desarrollo de la Expresión Génica , Programas Informáticos
11.
Nat Cell Biol ; 19(8): 988-995, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28737772

RESUMEN

Cell polarization enables zygotes to acquire spatial asymmetry, which in turn patterns cellular and tissue axes during development. Local modification in the actomyosin cytoskeleton mediates spatial segregation of partitioning-defective (PAR) proteins at the cortex, but how mechanical changes in the cytoskeleton are transmitted to PAR proteins remains elusive. Here we uncover a role of actomyosin contractility in the remodelling of PAR proteins through cortical clustering. During embryonic polarization in Caenorhabditis elegans, actomyosin contractility and the resultant cortical tension stimulate clustering of PAR-3 at the cortex. Clustering of atypical protein kinase C (aPKC) is supported by PAR-3 clusters and is antagonized by activation of CDC-42. Cortical clustering is associated with retardation of PAR protein exchange at the cortex and with effective entrainment of advective cortical flows. Our findings delineate how cytoskeleton contractility couples the cortical clustering and long-range displacement of PAR proteins during polarization. The principles described here would apply to other pattern formation processes that rely on local modification of cortical actomyosin and PAR proteins.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Citoesqueleto/enzimología , Proteínas de Unión al GTP/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/metabolismo , Actomiosina/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Embrión no Mamífero/enzimología , Proteínas de Unión al GTP/genética , Regulación del Desarrollo de la Expresión Génica , Genotipo , Proteínas de la Membrana/genética , Ratones , Microscopía Fluorescente , Microscopía por Video , Células 3T3 NIH , Fenotipo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas , Estrés Mecánico , Transfección
12.
Semin Cell Dev Biol ; 71: 129-136, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28577924

RESUMEN

The generation of a functional organism from a single, fertilized ovum requires the spatially coordinated regulation of diverse cell identities. The establishment and precise arrangement of differentiated cells in developing embryos has, historically, been extensively studied by geneticists and developmental biologists. While chemical gradients and genetic regulatory networks are widely acknowledged to play significant roles in embryo patterning, recent studies have highlighted that mechanical forces generated by, and exerted on, embryos are also crucial for the proper control of cell differentiation and morphogenesis. Here we review the most recent findings in murine preimplantation embryogenesis on the roles of cortical tension in the coupling of cell-fate determination and cell positioning in 8-16-cell-stage embryos. These basic principles of mechanochemical coupling in mouse embryos can be applied to other pattern formation phenomena that rely on localized modifications of cell polarity proteins and actin cytoskeletal components and activities.


Asunto(s)
Blastocisto , Animales , Tipificación del Cuerpo , Polaridad Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Modelos Biológicos
14.
Cell Rep ; 16(8): 2156-2168, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27524610

RESUMEN

Cell polarity arises through the spatial segregation of polarity regulators. PAR proteins are polarity regulators that localize asymmetrically to two opposing cortical domains. However, it is unclear how the spatially segregated PAR proteins interact to maintain their mutually exclusive partitioning. Here, single-molecule detection analysis in Caenorhabditis elegans embryos reveals that cortical PAR-2 diffuses only short distances, and, as a result, most PAR-2 molecules associate and dissociate from the cortex without crossing into the opposing domain. Our results show that cortical PAR-2 asymmetry is maintained by the local exchange reactions that occur at the cortical-cytoplasmic boundary. Additionally, we demonstrate that local exchange reactions are sufficient to maintain cortical asymmetry in a parameter-free mathematical model. These findings suggest that anterior and posterior PAR proteins primarily interact through the cytoplasmic pool and not via cortical diffusion.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Citoplasma/metabolismo , Embrión no Mamífero/metabolismo , Modelos Estadísticos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Compartimento Celular , Polaridad Celular , Citoplasma/ultraestructura , Embrión no Mamífero/citología , Regulación de la Expresión Génica , Cinética , Fosforilación , Transporte de Proteínas , Imagen Individual de Molécula
15.
Philos Trans R Soc Lond B Biol Sci ; 368(1629): 20130010, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24062581

RESUMEN

To become polarized, cells must first 'break symmetry'. Symmetry breaking is the process by which an unpolarized, symmetric cell develops a singularity, often at the cell periphery, that is used to develop a polarity axis. The Caenorhabditis elegans zygote breaks symmetry under the influence of the sperm-donated centrosome, which causes the PAR polarity regulators to sort into distinct anterior and posterior cortical domains. Modelling analyses have shown that cortical flows induced by the centrosome combined with antagonism between anterior and posterior PARs (mutual exclusion) are sufficient, in principle, to break symmetry, provided that anterior and posterior PAR activities are precisely balanced. Experimental evidence indicates, however, that the system is surprisingly robust to changes in cortical flows, mutual exclusion and PAR balance. We suggest that this robustness derives from redundant symmetry-breaking inputs that engage two positive feedback loops mediated by the anterior and posterior PAR proteins. In particular, the PAR-2 feedback loop stabilizes the polarized state by creating a domain where posterior PARs are immune to exclusion by anterior PARs. The two feedback loops in the PAR network share characteristics with the two feedback loops in the Cdc42 polarization network of Saccharomyces cerevisiae.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Polaridad Celular/fisiología , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Centrosoma/fisiología , Retroalimentación Fisiológica/fisiología , Cigoto/fisiología , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo
16.
Nat Cell Biol ; 13(11): 1361-7, 2011 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-21983565

RESUMEN

A hallmark of polarized cells is the segregation of the PAR polarity regulators into asymmetric domains at the cell cortex. Antagonistic interactions involving two conserved kinases, atypical protein kinase C (aPKC) and PAR-1, have been implicated in polarity maintenance, but the mechanisms that initiate the formation of asymmetric PAR domains are not understood. Here, we describe one pathway used by the sperm-donated centrosome to polarize the PAR proteins in Caenorhabditis elegans zygotes. Before polarization, cortical aPKC excludes PAR-1 kinase and its binding partner PAR-2 by phosphorylation. During symmetry breaking, microtubules nucleated by the centrosome locally protect PAR-2 from phosphorylation by aPKC, allowing PAR-2 and PAR-1 to access the cortex nearest the centrosome. Cortical PAR-1 phosphorylates PAR-3, causing the PAR-3-aPKC complex to leave the cortex. Our findings illustrate how microtubules, independently of actin dynamics, stimulate the self-organization of PAR proteins by providing local protection against a global barrier imposed by aPKC.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Polaridad Celular , Microtúbulos/enzimología , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cigoto/enzimología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Microtúbulos/genética , Complejos Multienzimáticos , Dominios PDZ , Fosforilación , Proteína Quinasa C/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
17.
Nat Cell Biol ; 13(6): 641-51, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21572423

RESUMEN

Large gaps in basement membrane occur at sites of cell invasion and tissue remodelling in development and cancer. Though never followed directly in vivo, basement membrane dissolution or reduced synthesis have been postulated to create these gaps. Using landmark photobleaching and optical highlighting of laminin and type IV collagen, we find that a new mechanism, basement membrane sliding, underlies basement membrane gap enlargement during uterine-vulval attachment in Caenorhabditis elegans. Laser ablation and mutant analysis reveal that the invaginating vulval cells promote basement membrane movement. Further, an RNA interference and expression screen identifies the integrin INA-1/PAT-3 and VAB-19, homologue of the tumour suppressor Kank, as regulators of basement membrane opening. Both concentrate within vulval cells at the basement membrane gap boundary and halt expansion of the shifting basement membrane. Basement membrane sliding followed by targeted adhesion represents a new mechanism for creating precise basement membrane breaches that can be used by cells to break down compartment boundaries.


Asunto(s)
Membrana Basal/fisiología , Caenorhabditis elegans , Animales , Membrana Basal/ultraestructura , Adhesión Celular , Femenino , Útero/fisiología , Vulva/fisiología
18.
Science ; 330(6011): 1685-9, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21127218

RESUMEN

Asymmetric segregation of P granules during the first four divisions of the Caenorhabditis elegans embryo is a classic example of cytoplasmic partitioning of germline determinants. It is thought that asymmetric partitioning of P granule components during mitosis is essential to distinguish germline from soma. We have identified a mutant (pptr-1) in which P granules become unstable during mitosis and P granule proteins and RNAs are distributed equally to somatic and germline blastomeres. Despite symmetric partitioning of P granule components, pptr-1 mutants segregate a germline that uniquely expresses P granules during postembryonic development. pptr-1 mutants are fertile, except at high temperatures. Hence, asymmetric partitioning of maternal P granules is not essential to specify germ cell fate. Instead, it may serve to protect the nascent germline from stress.


Asunto(s)
Blastómeros/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Citoplasma/metabolismo , Gránulos Citoplasmáticos/fisiología , Células Germinativas/fisiología , ARN de Helminto/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Gránulos Citoplasmáticos/ultraestructura , Embrión no Mamífero/fisiología , Desarrollo Embrionario , Interfase , Microscopía Confocal , Mitosis , Mutación , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Cigoto/fisiología
19.
Genes Cells ; 15(11): 1145-57, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20964796

RESUMEN

Dynactin is a multisubunit protein complex required for the activity of cytoplasmic dynein. In Caenorhabditis elegans, although 10 of the 11 dynactin subunits were identified based on the sequence similarities to their orthologs, the p24/p22 subunit has not been detected in the genome. Here, we demonstrate that DNC-3 (W10G11.20) is the functional counterpart of the p24/p22 subunit in C. elegans. RNAi phenotypes and subcellular localization of DNC-3 in early C. elegans embryos were nearly identical to those of the known dynactin components. All other dynactin subunits were co-immunoprecipitated with DNC-3, indicating that DNC-3 is a core component of dynactin. Furthermore, the overall secondary structure of DNC-3 resembles to those of the mammalian and yeast p24/p22. We found that DNC-3 is required for the localization of the DNC-1/p150(Glued) and DNC-2/dynamitin, the two components of the projection arm of dynactin, to the nuclear envelope of meiotic nuclei in the adult gonad. Moreover, DNC-3 physically interacted with DNC-1 and DNC-2 and significantly enhanced the binding ability between DNC-1 and DNC-2 in vitro. These results suggest that DNC-3 is essential for the formation of the projection arm subcomplex of dynactin.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Subunidades de Proteína/metabolismo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Dineínas Citoplasmáticas/metabolismo , Complejo Dinactina , Embrión no Mamífero , Glutatión Transferasa/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Estructura Secundaria de Proteína/genética , Subunidades de Proteína/química , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Fracciones Subcelulares/metabolismo
20.
Development ; 137(10): 1669-77, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20392744

RESUMEN

Polarization of the C. elegans zygote is initiated by ECT-2-dependent cortical flows, which mobilize the anterior PAR proteins (PAR-3, PAR-6 and PKC-3) away from the future posterior end of the embryo marked by the sperm centrosome. Here, we demonstrate the existence of a second, parallel and redundant pathway that can polarize the zygote in the absence of ECT-2-dependent cortical flows. This second pathway depends on the polarity protein PAR-2. We show that PAR-2 localizes to the cortex nearest the sperm centrosome even in the absence of cortical flows. Once on the cortex, PAR-2 antagonizes PAR-3-dependent recruitment of myosin, creating myosin flows that transport the anterior PAR complex away from PAR-2 in a positive-feedback loop. We propose that polarity in the C. elegans zygote is initiated by redundant ECT-2- and PAR-2-dependent mechanisms that lower PAR-3 levels locally, triggering a positive-feedback loop that polarizes the entire cortex.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Caenorhabditis elegans/fisiología , Polaridad Celular/genética , Cigoto/crecimiento & desarrollo , Alelos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero , Genes de Helminto/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Transducción de Señal/fisiología , Cigoto/metabolismo , Cigoto/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA