Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Cell Physiol ; 65(3): 460-471, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38179828

RESUMEN

Thermospermine suppresses auxin-inducible xylem differentiation, whereas its structural isomer, spermine, is involved in stress responses in angiosperms. The thermospermine synthase, ACAULIS5 (ACL5), is conserved from algae to land plants, but its physiological functions remain elusive in non-vascular plants. Here, we focused on MpACL5, a gene in the liverwort Marchantia polymorpha, that rescued the dwarf phenotype of the acl5 mutant in Arabidopsis. In the Mpacl5 mutants generated by genome editing, severe growth retardation was observed in the vegetative organ, thallus, and the sexual reproductive organ, gametangiophore. The mutant gametangiophores exhibited remarkable morphological defects such as short stalks, fasciation and indeterminate growth. Two gametangiophores fused together, and new gametangiophores were often initiated from the old ones. Furthermore, Mpacl5 showed altered responses to heat and salt stresses. Given the absence of spermine in bryophytes, these results suggest that thermospermine has a dual primordial function in organ development and stress responses in M. polymorpha. The stress response function may have eventually been assigned to spermine during land plant evolution.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Marchantia , Espermina/análogos & derivados , Reguladores del Crecimiento de las Plantas , Proteínas de Arabidopsis/genética , Marchantia/genética , Arabidopsis/genética , Plantas
2.
Plant Signal Behav ; 18(1): 2281159, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37965769

RESUMEN

Morphological response of cells to environment involves concerted rearrangements of microtubules and actin microfilaments. A mutant of WAVE-DAMPENED2-LIKE5 (WDL5), which encodes an ethylene-regulated microtubule-associated protein belonging to the WVD2/WDL family in Arabidopsis thaliana, shows attenuation in the temporal root growth reduction in response to mechanical stress. We found that a T-DNA knockout of WDL6, the closest homolog of WDL5, oppositely shows an enhancement of the response. To know the functional relationship between WDL5 and WDL6, we attempted to generate the double mutant by crosses but failed in isolation. Close examination of gametophytes in plants that are homozygous for one and heterozygous for the other revealed that these plants produce pollen grains with a reduced rate of germination and tube growth. Reciprocal cross experiments of these plants with the wild type confirmed that the double mutation is not inherited paternally. These results suggest a critical and cooperative function of WDL5 and WDL6 in pollen tube growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Tubo Polínico/metabolismo , Polen/metabolismo , Mutación/genética , Germinación
3.
FEBS Lett ; 596(23): 3005-3014, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35962471

RESUMEN

In Arabidopsis thaliana, the ACL5 gene encodes thermospermine synthase and its mutant, acl5, exhibits a dwarf phenotype with excessive xylem formation. Studies of suppressor mutants of acl5 reveal the involvement of thermospermine in enhancing mRNA translation of the SAC51 gene family. We show here that a mutant, sac59, which partially suppresses the acl5 phenotype, has a point mutation in JMJ22 encoding a D6-class Jumonji C protein (JMJD6). A T-DNA insertion allele, jmj22-2, also partially suppressed the acl5 phenotype while mutants of its closest two homologs JMJ21 and JMJ20 had no such effects, suggesting a unique role for JMJ22 in plant development. We found that mRNAs of the SAC51 family are more stabilized in acl5 jmj22-2 than in acl5.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Xilema/genética , Xilema/metabolismo , Fenotipo , Mutación
4.
Commun Integr Biol ; 15(1): 164-167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832537

RESUMEN

A NIMA-related protein kinase, MpNEK1, directs tip growth of rhizoids through microtubule depolymerization in a liverwort Marchantia polymorpha. The Mpnek1 knockouts were shown to develop curly and spiral rhizoids due to the fluctuated direction of growth. Still, physiological roles and mechanisms of MpNEK1-dependent rhizoid tip growth remain to be clarified. Here, we developed novel culture methods to further study rhizoid growth of M. polymorpha, in which plants were grown on vertical plates. We applied the established methods to investigate MpNEK1 function in rhizoid growth. Rhizoids of the wild-type and Mpnek1 plants grew toward the gravity. The aerial rhizoids were longer in Mpnek1 than in the wild type. When the rhizoids were grown on the surface of a cellophane sheet, rhizoid length was comparable between the wild type and Mpnek1, whereas Mpnek1 developed more rhizoids compared to the wild type. We also applied gellan gum, which is more transparent than agar, to analyze rhizoids grown in the medium. Rhizoids of Mpnek1 displayed defect on entering into the solid medium. These results suggest that Mpnek1 rhizoids have the deficiency in invasive tip growth. Thus, stable directional growth is important for rhizoids to get into the soil to anchor plant body and to adsorb water and nutrients. Collectively, our newly designed growth systems are valuable for analyzing rhizoid growth.

5.
Plant Cell Physiol ; 62(11): 1718-1727, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34383076

RESUMEN

Agrobacterium-mediated transient gene expression is a rapid and useful approach for characterizing functions of gene products in planta. However, the practicability of the method in the model liverwort Marchantia polymorpha has not yet been thoroughly described. Here we report a simple and robust method for Agrobacterium-mediated transient transformation of Marchantia thalli and its applicability. When thalli of M. polymorpha were co-cultured with Agrobacterium tumefaciens carrying ß-glucuronidase (GUS) genes, GUS staining was observed primarily in assimilatory filaments and rhizoids. GUS activity was detected 2 days after infection and saturated 3 days after infection. We were able to transiently co-express fluorescently tagged proteins with proper localizations. Furthermore, we demonstrate that our method can be used as a novel pathosystem to study liverwort-bacteria interactions. We also provide evidence that air chambers support bacterial colonization.


Asunto(s)
Agrobacterium tumefaciens/fisiología , Marchantia/genética , Plantas Modificadas Genéticamente/genética , Transducción Genética/métodos , Transformación Genética , Marchantia/microbiología
6.
Plant Cell Physiol ; 62(5): 858-871, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33768225

RESUMEN

Ethylene is a gaseous phytohormone involved in various physiological processes, including fruit ripening, senescence, root hair development and stress responses. Recent genomics studies have suggested that most homologous genes of ethylene biosynthesis and signaling are conserved from algae to angiosperms, whereas the function and biosynthesis of ethylene remain unknown in basal plants. Here, we examined the physiological effects of ethylene, an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) and an inhibitor of ethylene perception, silver thiosulfate (STS), in a basal land plant, Marchantia polymorpha. M. polymorpha plants biosynthesized ethylene, and treatment with high concentrations of ACC slightly promoted ethylene production. ACC remarkably suppressed the growth of thalli (vegetative organs) and rhizoids (root-hair-like cells), whereas exogenous ethylene slightly promoted thallus growth. STS suppressed thallus growth and induced ectopic rhizoid formation on the dorsal surface of thalli. Thus, ACC and ethylene have different effects on the vegetative growth of M. polymorpha. We generated single and double mutants of ACC synthase-like (ACSL) genes, MpACSL1 and MpACSL2. The mutants did not show obvious defects in thallus growth, ACC content and ethylene production, indicating that MpACSL genes are not essential for the vegetative growth and biosynthesis of ACC and ethylene. Gene expression analysis suggested the involvement of MpACSL1 and MpACSL2 in stress responses. Collectively, our results imply ethylene-independent function of ACC and the absence of ACC-mediated ethylene biosynthesis in M. polymorpha.


Asunto(s)
Aminoácidos Cíclicos/metabolismo , Etilenos/metabolismo , Marchantia/metabolismo , Aminoácidos Cíclicos/farmacología , Etilenos/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Marchantia/efectos de los fármacos , Marchantia/genética , Marchantia/crecimiento & desarrollo , Mutación , Compuestos Organofosforados/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiosulfatos/farmacología
7.
Plant Cell Rep ; 40(3): 575-582, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33439322

RESUMEN

KEY MESSAGE: We found that mutations in a Ca2+-permeable mechanosensitive channel MCA1, an ethylene-regulated microtubule-associated protein WDL5, and a versatile co-receptor BAK1 affect root growth response to mechanical stress. Plant root tips exposed to mechanical impedance show a temporal reduction in the elongation growth. The process involves a transient Ca2+ increase in the cytoplasm followed by ethylene signaling. To dissect the molecular mechanisms underlying this response, we examined the root growth of a series of Arabidopsis mutants with potentially altered response to mechanical stress after transfer from vertical to horizontal plates that were covered by dialysis membrane as an impedance. Among the plant hormone-response mutants tested, the ethylene-insensitive mutant ein3 was confirmed to show no growth reduction after the transfer. The root growth reduction was attenuated in a mutant of MCA1 encoding a Ca2+-permeable mechanosensitive channel and that of WDL5 encoding an ethylene-regulated microtubule-associated protein. We also found that the growth reduction was enhanced in a mutant of BAK1 encoding a co-receptor that pairs with numerous leucine-rich repeat receptor kinases to modulate growth and immunity. These results suggest the root growth reduction in response to mechanical stress involves ethylene-mediated microtubule reorganization and also transmembrane receptor-mediated signal transduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Gravitropismo/fisiología , Proteínas de la Membrana/genética , Meristema/crecimiento & desarrollo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Mutación , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Estrés Fisiológico
8.
Curr Biol ; 30(8): 1491-1503.e2, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32169210

RESUMEN

Growth variability generates mechanical conflicts in tissues. In plants, cortical microtubules usually align with maximal tensile stress direction, thereby mechanically reinforcing cell walls, and channeling growth rate and direction. How this is achieved remains largely unknown and likely involves microtubule regulators. The NIMA-related microtubule-associated kinase NEK6 phosphorylates tubulin, leading to the depolymerization of a subset of microtubules. We found that cortical microtubules exhibit a hyper-response to mechanical stress in the nek6 mutant. This response contributes to local cell protrusions in slow-growing regions of the nek6 mutant hypocotyl. When growth amplitude is higher, the hyper-alignment of microtubules leads to variable, stop-and-go, phenotypes, resulting in wavy hypocotyl shapes. After gravistimulation or touch, the nek6 mutant also exhibits a hyperbent hypocotyl phenotype, consistent with an enhanced perception of its own deformation. Strikingly, we find that NEK6 exhibits a novel form of polarity, being recruited at the ends of a subset of microtubules at cell edges. This pattern can be modified after local ablation, matching the new maximal tensile stress directions. We propose that NEK6 depolymerizes cortical microtubules that best align with maximal tensile stress to generate a noisier network of microtubules. This prevents an overreaction of microtubules to growth fluctuations and, instead, promotes the buffering of growth variations.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hipocótilo/crecimiento & desarrollo , Microtúbulos/metabolismo , Quinasas Relacionadas con NIMA/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipocótilo/genética , Quinasas Relacionadas con NIMA/metabolismo , Propiocepción , Estrés Fisiológico/genética
9.
Plants (Basel) ; 8(8)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390771

RESUMEN

A mutant defective in the biosynthesis of thermospermine, acaulis5 (acl5), shows a dwarf phenotype with excess xylem vessels in Arabidopsis thaliana. Exogenous supply of thermospermine remarkably represses xylem differentiation in the root of seedlings, indicating the role of thermospermine in proper repression of xylem differentiation. However, the effect of thermospermine has rarely been investigated in other plant species. In this paper, we examined its effect on the growth and gene expression in rice seedlings. When grown with thermospermine, rice seedlings had no clearly enlarged metaxylem vessels in the root. Expression of OsACL5 was reduced in response to thermospermine, suggesting a negative feedback control of thermospermine biosynthesis like in Arabidopsis. Unlike Arabidopsis, however, rice showed up-regulation of phloem-expressed genes, OsHB5 and OsYSL16, by one-day treatment with thermospermine. Furthermore, expression of OsPAO2 and OsPAO6, encoding extracellular polyamine oxidase whose orthologs are not present in Arabidopsis, was induced by both thermospermine and spermine. These results suggest that thermospermine affects the expression of a subset of genes in rice different from those affected in Arabidopsis.

10.
Plant Cell Physiol ; 60(9): 2000-2014, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31386149

RESUMEN

Plants generally possess a strong ability to regenerate organs; for example, in tissue culture, shoots can regenerate from callus, a clump of actively proliferating, undifferentiated cells. Processing of pre-mRNA and ribosomal RNAs is important for callus formation and shoot regeneration. However, our knowledge of the roles of RNA quality control via the nonsense-mediated mRNA decay (NMD) pathway in shoot regeneration is limited. Here, we examined the shoot regeneration phenotypes of the low-beta-amylase1 (lba1)/upstream frame shift1-1 (upf1-1) and upf3-1 mutants, in which the core NMD components UPF1 and UPF3 are defective. These mutants formed callus from hypocotyl explants normally, but this callus behaved abnormally during shoot regeneration: the mutant callus generated numerous adventitious root structures instead of adventitious shoots in an auxin-dependent manner. Quantitative RT-PCR and microarray analyses showed that the upf mutations had widespread effects during culture on shoot-induction medium. In particular, the expression patterns of early auxin response genes, including those encoding AUXIN/INDOLE ACETIC ACID (AUX/IAA) family members, were significantly affected in the upf mutants. Also, the upregulation of shoot apical meristem-related transcription factor genes, such as CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, was inhibited in the mutants. Taken together, these results indicate that NMD-mediated transcriptomic regulation modulates the auxin response in plants and thus plays crucial roles in the early stages of shoot regeneration.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Degradación de ARNm Mediada por Codón sin Sentido , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Hipocótilo/genética , Hipocótilo/fisiología , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/fisiología , Mutación , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Transducción de Señal
11.
Plant J ; 100(2): 374-383, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257654

RESUMEN

In Arabidopsis, spermine is produced in most tissues and has been implicated in stress response, while its structural isomer thermospermine is only in xylem precursor cells. Studies on acaulis5 (acl5), a mutant defective in the biosynthesis of thermospermine, have revealed that thermospermine plays a repressive role in xylem development through enhancement of mRNA translation of the SAC51 family. In contrast, the pao5 mutant defective in the degradation of thermospermine has high levels of thermospermine and shows increased salt tolerance, suggesting a role of thermospermine in salt stress response. Here we compared acl5 with a mutant of spermine synthase, spms, in terms of abiotic stress tolerance and found that acl5 was much more sensitive to sodium than the wild-type and spms. A double-mutant of acl5 and sac51-d, which suppresses the excessive xylem phenotype of acl5, recovered normal sensitivity, while a quadruple T-DNA insertion mutant of the SAC51 family, which has an increased thermospermine level but shows excessive xylem development, showed increased salt sensitivity, unlike pao5. Together with the result that the salt tolerance of both wild-type and acl5 seedlings was improved by long-term treatment with thermospermine, we suggest a correlation of the salt tolerance with reduced xylem development rather than with the thermospermine level. We further found that the mutants containing high thermospermine levels showed increased tolerance to drought and heat stress, suggesting another role of thermospermine that may be common with that of spermine and secondary to that in restricting excess xylem development associated with salt hypersensitivity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Espermina/análogos & derivados , Xilema/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Espermina/metabolismo
12.
Front Plant Sci ; 10: 564, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118941

RESUMEN

ACAULIS5 (ACL5) encodes thermospermine synthase in Arabidopsis and its loss-of-function mutant acl5 shows excess xylem differentiation and severe dwarfism. SAC51 encodes a basic helix-loop-helix (bHLH) protein and was identified from sac51-d, a dominant suppressor mutant of acl5, which restores the wild-type phenotype without thermospermine. The 5' leader of the SAC51 mRNA contains multiple upstream open-reading frames (uORFs) and sac51-d has a premature stop codon in the fourth uORF. This uORF is conserved among SAC51 family genes in vascular plants. According to the GUS reporter assay, the SAC51 promoter was not responsive to thermospermine but the SAC51 5' leader fused to the constitutive 35S promoter enhanced the GUS activity in response to thermospermine. Disruption experiments of each start codon of the SAC51 uORFs revealed that uORF4 and uORF6 whose start codon corresponds to the second methionine codon of uORF4 had an inhibitory effect on the main ORF translation while the other four uORFs rather had a stimulatory effect. The response of the 5' leader to thermospermine was retained after disruption of each one of six start codons of these uORFs but abolished by mutating both uORF4 and uORF6 start codons, suggesting the importance of the C-terminal sequence shared by these uORFs in the action of thermospermine. We introduced GUS fusions with 5' leaders of SAC51 family genes from other angiosperm species into Arabidopsis and found that all 5' leaders responsive to thermospermine, so far examined, contained these two conserved, and overlapping uORFs.

13.
Plant Cell Physiol ; 59(8): 1581-1591, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30011034

RESUMEN

Mechanical sensing is one of the most fundamental processes for sessile plants to survive and grow. The response is known to involve calcium elevation in the cell. Arabidopsis seedlings grown horizontally on agar plates covered with a dialysis membrane show a 2-fold reduction in root growth compared with those grown vertically, a response to mechanical stress generated due to gravitropism of the root. To understand the molecular mechanism of how plant roots sense and respond to mechanical stimuli, we screened chemical libraries for compounds that affect the horizontal root growth in this experimental system and found that, while having no effect on root gravitropism, omeprazole known as a proton pump inhibitor significantly enhanced the mechanical stress-induced root growth reduction especially in lower pH media. In contrast, omeprazole reversed neither the alleviation of the mechanical stress-induced growth reduction caused by calcium depletion nor the insensitivity to the mechanical stress in the ethylene signaling mutant ein2. Together with the finding that omeprazole increased expression of touch-induced genes and ETHYLENE RESPONSE FACTOR1, our results suggest that the target of omeprazole mediates ethylene signaling in the root growth response to mechanical stress.


Asunto(s)
Omeprazol/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Estrés Mecánico , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Gravitropismo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
14.
Development ; 145(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29440300

RESUMEN

Tip growth is driven by turgor pressure and mediated by the polarized accumulation of cellular materials. How a single polarized growth site is established and maintained is unclear. Here, we analyzed the function of NIMA-related protein kinase 1 (MpNEK1) in the liverwort Marchantia polymorpha In the wild type, rhizoid cells differentiate from the ventral epidermis and elongate through tip growth to form hair-like protrusions. In Mpnek1 knockout mutants, rhizoids underwent frequent changes in growth direction, resulting in a twisted and/or spiral morphology. The functional MpNEK1-Citrine protein fusion localized to microtubule foci in the apical growing region of rhizoids. Mpnek1 knockouts exhibited increases in both microtubule density and bundling in the apical dome of rhizoids. Treatment with the microtubule-stabilizing drug taxol phenocopied the Mpnek1 knockout. These results suggest that MpNEK1 directs tip growth in rhizoids through microtubule organization. Furthermore, MpNEK1 expression rescued ectopic outgrowth of epidermal cells in the Arabidopsis thaliana nek6 mutant, strongly supporting an evolutionarily conserved NEK-dependent mechanism of directional growth. It is possible that such a mechanism contributed to the evolution of the early rooting system in land plants.


Asunto(s)
Marchantia , Quinasas Relacionadas con NIMA/fisiología , Rizoma/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Secuencia Conservada , Embryophyta , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Marchantia/genética , Marchantia/crecimiento & desarrollo , Quinasa 1 Relacionada con NIMA/genética , Quinasas Relacionadas con NIMA/genética , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente , Rizoma/genética
15.
Sci Rep ; 7(1): 7826, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798328

RESUMEN

Plant cortical microtubules align perpendicular to the growth axis to determine the direction of cell growth. However, it remains unclear how plant cells form well-organized cortical microtubule arrays in the absence of a centrosome. In this study, we investigated the functions of Arabidopsis NIMA-related kinase 6 (NEK6), which regulates microtubule organization during anisotropic cell expansion. Quantitative analysis of hypocotyl cell growth in the nek6-1 mutant demonstrated that NEK6 suppresses ectopic outgrowth and promotes cell elongation in different regions of the hypocotyl. Loss of NEK6 function led to excessive microtubule waving and distortion, implying that NEK6 suppresses the aberrant cortical microtubules. Live cell imaging showed that NEK6 localizes to the microtubule lattice and to the shrinking plus and minus ends of microtubules. In agreement with this observation, the induced overexpression of NEK6 reduced and disorganized cortical microtubules and suppressed cell elongation. Furthermore, we identified five phosphorylation sites in ß-tubulin that serve as substrates for NEK6 in vitro. Alanine substitution of the phosphorylation site Thr166 promoted incorporation of mutant ß-tubulin into microtubules. Taken together, these results suggest that NEK6 promotes directional cell growth through phosphorylation of ß-tubulin and the resulting destabilization of cortical microtubules.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Microtúbulos/metabolismo , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Tubulina (Proteína)/química , Anisotropía , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Mutación , Fosforilación , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
16.
Plant Cell Physiol ; 58(8): 1350-1363, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28505371

RESUMEN

Microtubules are dynamic filaments, the assembly and disassembly of which are under precise control of various associated proteins, including motor proteins and regulatory enzymes. In Arabidopsis thaliana, two such proteins are the ARMADILLO-REPEAT KINESIN 1 (ARK1), which promotes microtubule disassembly, and the NIMA-RELATED KINASE 6 (NEK6), which has a role in organizing microtubule arrays. Previous yeast two-hybrid and in vitro pull-down assays determined that NEK6 can interact with ARK1 through the latter protein's Armadillo-repeat (ARM) cargo domain. To explore the function of the ARM domain, we generated fluorescent reporter fusion proteins to ARK1 lacking the ARM domain (ARK1ΔARM-GFP) and to the ARM domain alone (ARM-GFP). Both of these constructs strongly associated with the growing plus ends of microtubules, but only ARK1ΔARM-GFP was capable of inducing microtubule catastrophe and rescuing the ark1-1 root hair phenotype. These results indicate that neither the ARM domain nor NEK6's putative interaction with it is required for ARK1 to induce microtubule catastrophe. In further exploration of the ARK1-NEK6 relationship, we demonstrated that, despite evidence that NEK6 can phosphorylate ARK1 in vitro, the in vivo distribution and function of ARK1 were not affected by the loss of NEK6, and vice versa. Moreover, NEK6 and ARK1 were found to have overlapping but non-identical distribution on microtubules, and hormone treatments known to affect NEK6 activity did not stimulate interaction. These findings suggest that ARK1 and NEK6 function independently in microtubule dynamics and cell morphogenesis. Despite the results of this functional analysis, we found that overexpression of the ARM domain led to complete loss of NEK6 transcription, suggesting that the ARM domain might have a regulatory role in NEK6 expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Quinasas Relacionadas con NIMA/metabolismo , Aminoácidos Cíclicos/farmacología , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Giberelinas/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinesinas/genética , Microtúbulos/genética , Mutación , Fosforilación , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas
17.
Plant Cell Physiol ; 57(8): 1583-92, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27388339

RESUMEN

The acaulis5 (acl5) mutant of Arabidopsis thaliana is defective in the biosynthesis of thermospermine and shows a dwarf phenotype associated with excess xylem differentiation. SAC51 was identified from a dominant suppressor of acl5, sac51-d, and encodes a basic helix-loop-helix protein. The sac51-d mutant has a premature termination codon in an upstream open reading frame (uORF) that is conserved among all four members of the SAC51 family, SAC51 and SACL1-SACL3 This suggests that thermospermine cancels the inhibitory effect of the uORF in main ORF translation. Another suppressor, sac57-d, has a mutation in the conserved uORF of SACL3 To define further the function of the SAC51 family in the thermospermine response, we analyzed T-DNA insertion mutants of each gene. Although sacl1-1 may not be a null allele, the quadruple mutant showed a semi-dwarf phenotype but with an increased level of thermospermine and decreased sensitivity to exogenous thermospermine that normally represses xylem differentiation. The sac51-1 sacl3-1 double mutant was also insensitive to thermospermine. These results suggest that SAC51 and SACL3 play a key role in thermospermine-dependent negative control of thermospermine biosynthesis and xylem differentiation. Using 5' leader-GUS (ß-glucuronidase) fusion constructs, however, we detected a significant enhancement of the GUS activity by thermospermine only in SAC51 and SACL1 constructs. Furthermore, while acl5-1 sac51-1 showed the acl5 dwarf phenotype, acl5-1 sacl3-1 exhibited an extremely tiny-plant phenotype. These results suggest a complex regulatory network for the thermospermine response in which SAC51 and SACL3 function in parallel pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Espermina/análogos & derivados , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Modelos Biológicos , Mutagénesis Insercional , Sistemas de Lectura Abierta/genética , Fenotipo , Plantones/citología , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Alineación de Secuencia , Espermina/metabolismo , Espermina/farmacología , Xilema/citología , Xilema/efectos de los fármacos , Xilema/genética , Xilema/fisiología
18.
Front Plant Sci ; 7: 834, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379127

RESUMEN

Polyamines are small basic compounds present in all living organisms and act in a variety of biological processes. However, the mechanism of polyamine sensing, signaling and response in relation to other metabolic pathways remains to be fully addressed in plant cells. As one approach, we isolated Arabidopsis mutants that show increased resistance to spermine in terms of chlorosis. We show here that two of the mutants have a point mutation in a nitrate transporter gene of the NRT1/PTR family (NPF), NRT1.3 (AtNPF6.4). These mutants also exhibit increased resistance to putrescine and spermidine while loss-of-function mutants of the two closest homologs of NRT1.3, root-specific NRT1.1 (AtNPF6.3) and petiole-specific NRT1.4 (AtNPF6.2), were shown to have a normal sensitivity to polyamines. When the GUS reporter gene was expressed under the control of the NRT1.3 promoter, GUS staining was observed in leaf mesophyll cells and stem cortex cells but not in the epidermis, suggesting that NRT1.3 specifically functions in parenchymal tissues. We further found that the aerial part of the mutant seedling has normal levels of polyamines but shows reduced uptake of norspermidine compared with the wild type. These results suggest that polyamine transport or metabolism is associated with nitrate transport in the parenchymal tissue of the shoot.

19.
Sci Rep ; 6: 21487, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879262

RESUMEN

The xylem conducts water and minerals from the root to the shoot and provides mechanical strength to the plant body. The vascular precursor cells of the procambium differentiate to form continuous vascular strands, from which xylem and phloem cells are generated in the proper spatiotemporal pattern. Procambium formation and xylem differentiation are directed by auxin. In angiosperms, thermospermine, a structural isomer of spermine, suppresses xylem differentiation by limiting auxin signalling. However, the process of auxin-inducible xylem differentiation has not been fully elucidated and remains difficult to manipulate. Here, we found that an antagonist of spermidine can act as an inhibitor of thermospermine biosynthesis and results in excessive xylem differentiation, which is a phenocopy of a thermospermine-deficient mutant acaulis5 in Arabidopsis thaliana. We named this compound xylemin owing to its xylem-inducing effect. Application of a combination of xylemin and thermospermine to wild-type seedlings negates the effect of xylemin, whereas co-treatment with xylemin and a synthetic proauxin, which undergoes hydrolysis to release active auxin, has a synergistic inductive effect on xylem differentiation. Thus, xylemin may serve as a useful transformative chemical tool not only for the study of thermospermine function in various plant species but also for the control of xylem induction and woody biomass production.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Diferenciación Celular/efectos de los fármacos , Putrescina/análogos & derivados , Putrescina/farmacología , Espermidina/antagonistas & inhibidores , Espermina/análogos & derivados , Xilema/fisiología , Ácido 2,4-Diclorofenoxiacético/farmacología , Arabidopsis , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Espermidina/metabolismo , Espermina/biosíntesis , Xilema/efectos de los fármacos
20.
J Plant Res ; 128(6): 875-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26354760

RESUMEN

Microtubules are highly dynamic structures that control the spatiotemporal pattern of cell growth and division. Microtubule dynamics are regulated by reversible protein phosphorylation involving both protein kinases and phosphatases. Never in mitosis A (NIMA)-related kinases (NEKs) are a family of serine/threonine kinases that regulate microtubule-related mitotic events in fungi and animal cells (e.g. centrosome separation and spindle formation). Although plants contain multiple members of the NEK family, their functions remain elusive. Recent studies revealed that NEK6 of Arabidopsis thaliana regulates cell expansion and morphogenesis through ß-tubulin phosphorylation and microtubule destabilization. In addition, plant NEK members participate in organ development and stress responses. The present phylogenetic analysis indicates that plant NEK genes are diverged from a single NEK6-like gene, which may share a common ancestor with other kinases involved in the control of microtubule organization. On the contrary, another mitotic kinase, polo-like kinase, might have been lost during the evolution of land plants. We propose that plant NEK members have acquired novel functions to regulate cell growth, microtubule organization, and stress responses.


Asunto(s)
Evolución Molecular , Microtúbulos/metabolismo , Plantas/clasificación , Plantas/enzimología , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Fosforilación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Proteínas Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA