Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Trends Microbiol ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37973432

RESUMEN

Nitrification is a key microbial process in the nitrogen (N) cycle that converts ammonia to nitrate. Excessive nitrification, typically occurring in agroecosystems, has negative environmental impacts, including eutrophication and greenhouse gas emissions. Nitrification inhibitors (NIs) are widely used to manage N in agricultural systems by reducing nitrification rates and improving N use efficiency. However, the effectiveness of NIs can vary depending on the soil conditions, which, in turn, affect the microbial community and the balance between different functional groups of nitrifying microorganisms. Understanding the mechanisms underlying the effectiveness of NIs, and how this is affected by the soil microbial communities or abiotic factors, is crucial for promoting sustainable fertilizer practices. Therefore, this review examines the different types of NIs and how abiotic parameters can influence the nitrifying community, and, therefore, the efficacy of NIs. By discussing the latest research in this field, we provide insights that could facilitate the development of more targeted, efficient, or complementary NIs that improve the application of NIs for sustainable management practices in agroecosystems.

2.
Plant J ; 116(4): 1052-1063, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37793018

RESUMEN

Lateral roots are crucial for plant growth and development, making them an important target for research aiming to improve crop yields and food security. However, their endogenous ontogeny and, as it were, stochastic appearance challenge their study. Lateral Root Inducible Systems (LRIS) can be used to overcome these challenges by inducing lateral roots massively and synchronously. The combination of LRISs with transcriptomic approaches significantly advanced our insights in the molecular control of lateral root formation, in particular for Arabidopsis. Despite this success, LRISs have been underutilized for other plant species or for lateral root developmental stages later than the initiation. In this study, we developed and/or adapted LRISs in rice, Medicago, and Arabidopsis to perform RNA-sequencing during time courses that cover different developmental stages of lateral root formation and primordium development. As such, our study provides three extensive datasets of gene expression profiles during lateral root development in three different plant species. The three LRISs are highly effective but timing and spatial distribution of lateral root induction vary among the species. Detailed characterization of the stages in time and space in the respective species enabled an interspecies co-expression analysis to identify conserved players involved in lateral root development, as illustrated for the AUX/IAA and LBD gene families. Overall, our results provide a valuable resource to identify potentially conserved regulatory mechanisms in lateral root development, and as such will contribute to a better understanding of the complex regulatory network underlying lateral root development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/metabolismo , Oryza/genética , Oryza/metabolismo , Medicago/genética , Medicago/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo
3.
Curr Biol ; 33(19): 4069-4084.e8, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37683643

RESUMEN

Plant roots originated independently in lycophytes and euphyllophytes, whereas early vascular plants were rootless. The organization of the root apical meristem in euphyllophytes is well documented, especially in the model plant Arabidopsis. However, little is known about lycophyte roots and their molecular innovations during evolution. In this study, spatial transcriptomics was used to detect 97 root-related genes in the roots of the lycophyte Selaginella moellendorffii. A high number of genes showed expression patterns similar to what has been reported for seed plants, supporting the idea of a highly convergent evolution of mechanisms to control root development. Interaction and complementation data of SHORTROOT (SHR) and SCARECROW (SCR) homologs, furthermore, support a comparable regulation of the ground tissue (GT) between euphyllophytes and lycophytes. Root cap formation, in contrast, appears to be differently regulated. Several experiments indicated an important role of the WUSCHEL-RELATED HOMEOBOX13 gene SmWOX13a in Selaginella root cap formation. In contrast to multiple Arabidopsis WOX paralogs, SmWOX13a is able to induce root cap cells in Arabidopsis and has functionally conserved homologs in the fern Ceratopteris richardii. Lycophytes and a part of the euphyllophytes, therefore, may share a common mechanism regulating root cap formation, which was diversified or lost during seed plant evolution. In summary, we here provide a new spatial data resource for the Selaginella root, which in general advocates for conserved mechanisms to regulate root development but shows a clear divergence in the control of root cap formation, with a novel putative role of WOX genes in root cap formation in non-seed plants.


Asunto(s)
Arabidopsis , Raíces de Plantas , Arabidopsis/genética , Transcriptoma , Meristema , Plantas/genética , Regulación de la Expresión Génica de las Plantas
4.
J Environ Manage ; 346: 118996, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37725864

RESUMEN

Nitrogen (N) fertilization is crucial to sustain global food security, but fertilizer N production is energy-demanding and subsequent environmental N losses contribute to biodiversity loss and climate change. N losses can be mitigated be interfering with microbial nitrification, and therefore the use of nitrification inhibitors in enhanced efficiency fertilizers (EEFs) is an important N management strategy to increase N use efficiency and reduce N pollution. However, currently applied nitrification inhibitors have limitations and do not target all nitrifying microorganisms. Here, to identify broad-spectrum nitrification inhibitors, we adopted a drug discovery-based approach and screened 45,400 small molecules on different groups of nitrifying microorganisms. Although a high number of potential nitrification inhibitors were identified, none of them targeted all nitrifier groups. Moreover, a high number of new nitrification inhibitors were shown to be highly effective in culture but did not reduce ammonia consumption in soil. One archaea-targeting inhibitor was not only effective in soil, but even reduced - when co-applied with a bacteria-targeting inhibitor - ammonium consumption and greenhouse gas emissions beyond what is achieved with currently applied nitrification inhibitors. This advocates for combining different types of nitrification inhibitors in EEFs to optimize N management practices and make agriculture more sustainable.

5.
Nat Plants ; 9(9): 1514-1529, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37604972

RESUMEN

Ammonium toxicity affecting plant metabolism and development is a worldwide problem impeding crop production. Remarkably, rice (Oryza sativa L.) favours ammonium as its major nitrogen source in paddy fields. We set up a forward-genetic screen to decipher the molecular mechanisms conferring rice ammonium tolerance and identified rohan showing root hypersensitivity to ammonium due to a missense mutation in an argininosuccinate lyase (ASL)-encoding gene. ASL localizes to plastids and its expression is induced by ammonium. ASL alleviates ammonium-inhibited root elongation by converting the excessive glutamine to arginine. Consequently, arginine leads to auxin accumulation in the root meristem, thereby stimulating root elongation under high ammonium. Furthermore, we identified natural variation in the ASL allele between japonica and indica subspecies explaining their different root sensitivity towards ammonium. Finally, we show that ASL expression positively correlates with root ammonium tolerance and that nitrogen use efficiency and yield can be improved through a gain-of-function approach.


Asunto(s)
Oryza , Oryza/genética , Alelos , Arginina , Nitrógeno , Plastidios/genética
6.
Front Plant Sci ; 14: 1283047, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259951

RESUMEN

Nitrification is a microbial process that converts ammonia (NH3) to nitrite (NO2 -) and then to nitrate (NO3 -). The first and rate-limiting step in nitrification is ammonia oxidation, which is conducted by both bacteria and archaea. In agriculture, it is important to control this process as high nitrification rates result in NO3 - leaching, reduced nitrogen (N) availability for the plants and environmental problems such as eutrophication and greenhouse gas emissions. Nitrification inhibitors can be used to block nitrification, and as such reduce N pollution and improve fertilizer use efficiency (FUE) in agriculture. Currently applied inhibitors target the bacteria, and do not block nitrification by ammonia-oxidizing archaea (AOA). While it was long believed that nitrification in agroecosystems was primarily driven by bacteria, recent research has unveiled potential significant contributions from ammonia-oxidizing archaea (AOA), especially when bacterial activity is inhibited. Hence, there is also a need for AOA-targeting nitrification inhibitors. However, to date, almost no AOA-targeting inhibitors are described. Furthermore, AOA are difficult to handle, hindering their use to test or identify possible AOA-targeting nitrification inhibitors. To address the need for AOA-targeting nitrification inhibitors, we developed two miniaturized nitrification inhibition assays using an AOA-enriched nitrifying community or the AOA Nitrosospaera viennensis. These assays enable high-throughput testing of candidate AOA inhibitors. We here present detailed guidelines on the protocols and illustrate their use with some examples. We believe that these assays can contribute to the discovery of future AOA-targeting nitrification inhibitors, which could complement the currently applied inhibitors to increase nitrification inhibition efficiency in the field and as such contribute to a more sustainable agriculture.

7.
Plant Physiol ; 190(4): 2398-2416, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36029252

RESUMEN

The roots of lycophytes branch through dichotomy or bifurcation, during which the root apex splits into two daughter roots. This is morphologically distinct from lateral root (LR) branching in the extant euphyllophytes, with LRs developing along the root axis at different distances from the apex. Although the process of root bifurcation is poorly understood, such knowledge can be important, because it may represent an evolutionarily ancient strategy that roots recruited to form new stem cells or meristems. In this study, we examined root bifurcation in the lycophyte Selaginella moellendorffii. We characterized an in vitro developmental time frame based on repetitive apex bifurcations, allowing us to sample different stages of dichotomous root branching and analyze the root meristem and root branching in S. moellendorffii at the microscopic and transcriptomic level. Our results showed that, in contrast to previous assumptions, initial cells (ICs) in the root meristem are mostly not tetrahedral but rather show an irregular shape. Tracking down the early stages of root branching argues for the occurrence of a symmetric division of the single IC, resulting in two apical stem cells that initiate root meristem bifurcation. Moreover, we generated a S. moellendorffii root branching transcriptome that resulted in the delineation of a subset of core meristem genes. The occurrence of multiple putative orthologs of meristem genes in this dataset suggests the presence of conserved pathways in the control of meristem and root stem cell establishment or maintenance.


Asunto(s)
Selaginellaceae , Selaginellaceae/genética , Meristema/metabolismo , Transcriptoma/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Front Plant Sci ; 12: 735514, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671375

RESUMEN

Roots provide multiple key functions for plants, including anchorage and capturing of water and nutrients. Evolutionarily, roots represent a crucial innovation that enabled plants to migrate from aquatic to terrestrial environment and to grow in height. Based on fossil evidence, roots evolved at least twice independently, once in the lycophyte clade and once in the euphyllophyte (ferns and seed plants) clade. In lycophytes, roots originated in a stepwise manner. Despite their pivotal position in root evolution, it remains unclear how root development is controlled in lycophytes. Getting more insight into lycophyte root development might shed light on how genetic players controlling the root meristem and root developmental processes have evolved. Unfortunately, genetic studies in lycophytes are lagging behind, lacking advanced biotechnological tools, partially caused by the limited economic value of this clade. The technology of RNA sequencing (RNA-seq) at least enabled transcriptome studies, which could enhance the understanding or discovery of genes involved in the root development of this sister group of euphyllophytes. Here, we provide an overview of the current knowledge on root evolution followed by a survey of root developmental events and how these are genetically and hormonally controlled, starting from insights obtained in the model seed plant Arabidopsis and where possible making a comparison with lycophyte root development. Second, we suggest possible key genetic regulators in root development of lycophytes mainly based on their expression profiles in Selaginella moellendorffii and phylogenetics. Finally, we point out challenges and possible future directions for research on root evolution.

9.
Plant Physiol ; 187(3): 1104-1116, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33768243

RESUMEN

Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics toward nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.


Asunto(s)
Nitrógeno/metabolismo , Fenómenos Fisiológicos de las Plantas , Plantas , Transducción de Señal , Aclimatación , Nutrientes , Desarrollo de la Planta , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología
10.
Front Plant Sci ; 12: 814110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154211

RESUMEN

Root system architecture (RSA) has a direct influence on the efficiency of nutrient uptake and plant growth, but the genetics of RSA are often studied only at the seedling stage. To get an insight into the genetic blueprint of a more mature RSA, we exploited natural variation and performed a detailed in vitro study of 241 Arabidopsis thaliana accessions using large petri dishes. A comprehensive analysis of 17 RSA traits showed high variability among the different accessions, unveiling correlations between traits and conditions of the natural habitat of the plants. A sub-selection of these accessions was grown in water-limiting conditions in a rhizotron set-up, which revealed that especially the spatial distribution showed a high consistency between in vitro and ex vitro conditions, while in particular, a large root area in the lower zone favored drought tolerance. The collected RSA phenotype data were used to perform genome-wide association studies (GWAS), which stands out from the previous studies by its exhaustive measurements of RSA traits on more mature Arabidopsis accessions used for GWAS. As a result, we found not only several genes involved in the lateral root (LR) development or auxin signaling pathways to be associated with RSA traits but also new candidate genes that are potentially involved in the adaptation to the natural habitats.

11.
Nat Plants ; 6(9): 1080-1081, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917972
12.
Plant J ; 104(4): 1023-1037, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890411

RESUMEN

High levels of ammonium nutrition reduce plant growth and different plant species have developed distinct strategies to maximize ammonium acquisition while alleviating ammonium toxicity through modulating root growth. To date, the mechanisms underlying plant tolerance or sensitivity towards ammonium remain unclear. Rice (Oryza sativa) uses ammonium as its main N source. Here we show that ammonium supply restricts rice root elongation and induces a helical growth pattern, which is attributed to root acidification resulting from ammonium uptake. Ammonium-induced low pH triggers the asymmetric distribution of auxin in rice root tips through changes in auxin signaling, thereby inducing a helical growth response. Blocking auxin signaling completely inhibited this root response. In contrast, this root response is not activated in ammonium-treated Arabidopsis. Acidification of Arabidopsis roots leads to the protonation of indole-3-acetic acid and dampening of the intracellular auxin signaling levels that are required for maintaining root growth. Our study suggests a different mode of action by ammonium on the root pattern and auxin response machinery in rice versus Arabidopsis, and the rice-specific helical root response towards ammonium is an expression of the ability of rice to moderate auxin signaling and root growth to utilize ammonium while confronting acidic stress.


Asunto(s)
Compuestos de Amonio/metabolismo , Oryza/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Nitrógeno/metabolismo , Oryza/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Estrés Fisiológico
13.
J Exp Bot ; 71(8): 2379-2389, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31957786

RESUMEN

Root growth and development has become an important research topic for breeders and researchers based on a growing need to adapt plants to changing and more demanding environmental conditions worldwide. Over the last few years, genome-wide association studies (GWASs) became an important tool to identify the link between traits in the field and their genetic background. Here we give an overview of the current literature concerning GWASs performed on root system architecture (RSA) in plants. We summarize which root traits and approaches have been used for GWAS, mentioning their respective success rate towards a successful gene discovery. Furthermore, we zoom in on the current technical hurdles in root phenotyping and GWAS, and discuss future possibilities in this field of research.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fenotipo , Raíces de Plantas/genética
14.
Curr Opin Plant Biol ; 53: 23-30, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31707318

RESUMEN

Root stem cells are crucial for the establishment of roots and are therefore a major evolutionary innovation that enabled land plants to spread on land. Despite their importance, not too much is known about the origin and the molecular players installing and maintaining them. Although still fragmentary, the recent availability of new data for early land plants can be used to identify and analyze the conservation of key regulators of root meristems. In this review, we evaluate the possible conservation of important root stem cell regulators to suggest pathways that might have been important at the origin of roots.


Asunto(s)
Embryophyta , Raíces de Plantas , Evolución Biológica , Meristema , Células Madre
15.
Front Plant Sci ; 10: 154, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30842783

RESUMEN

Angiosperms develop intensively branched root systems that are accommodated with the high capacity to produce plenty of new lateral roots throughout their life-span. Root branching can be dynamically regulated in response to edaphic conditions and provides the plants with a soil-mining potential. This highly specialized branching capacity has most likely been key in the colonization success of the present flowering plants on our planet. The initiation, formation and outgrowth of branching roots in Angiosperms are dominated by the plant hormone auxin. Upon auxin treatment root branching through the formation of lateral roots can easily be induced. In this study, we questioned whether this strong branching-inducing action of auxin is part of a conserved mechanism that was already active in the earliest diverging lineage of vascular plants with roots. In Selaginella, an extant representative species of this early clade of root forming plants, components of the canonical auxin signaling pathway are retrieved in its genome. Although we observed a clear physiological response and an indirect effect on root branching, we were not able to directly induce root branching in this species by application of different auxins. We conclude that the structural and developmental difference of the Selaginella root, which branches via bifurcation of the root meristem, or the absence of an auxin-mediated root development program, is most likely causative for the absence of an auxin-induced branching mechanism.

16.
Annu Rev Plant Biol ; 70: 465-488, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-30822115

RESUMEN

In order to optimally establish their root systems, plants are endowed with several mechanisms to use at distinct steps during their development. In this review, we zoom in on the major processes involved in root development and detail important new insights that have been generated in recent studies, mainly using the Arabidopsis root as a model. First, we discuss new insights in primary root development with the characterization of tissue-specific transcription factor complexes and the identification of non-cell-autonomous control mechanisms in the root apical meristem. Next, root branching is discussed by focusing on the earliest steps in the development of a new lateral root and control of its postemergence growth. Finally, we discuss the impact of phosphate, nitrogen, and water availability on root development and summarize current knowledge about the major molecular mechanisms involved.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Meristema , Fosfatos , Raíces de Plantas
17.
Dev Cell ; 48(5): 599-615, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30861374

RESUMEN

Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/metabolismo
18.
J Exp Bot ; 70(3): 785-793, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30481325

RESUMEN

Plant roots and root systems are indispensable for water and nutrient foraging, and are a major evolutionary achievement for plants to cope with dry land conditions. The ability of roots to branch contributes substantially to their capacity to explore the soil for water and nutrients, and led ~400 million years ago to the successful colonization of land by plants, eventually even in arid regions. During this colonization, different forms of root branching evolved, reinforcing step by step the phenotypic plasticity of the root system. Whereas the lycophytes, the most ancient land plants with roots, only branch at the root tip, ferns are able to form roots laterally in a fixed pattern along the main root. Finally, roots of seed plants show the highest phenotypic plasticity, because lateral roots can possibly, dependent on internal and/or external signals, be produced at almost any position along the main root. The competence to form lateral roots in seed plants is based on the presence of internal cell files with stem cell-like features. Despite the dissimilarities between the different clades, a number of genetic modules seem to be co-opted in order to acquire root branching capacity. In this review, starting from the lateral root pathways in seed plants, we review root branching in the different land plant lineages and discuss the hitherto described genetic modules that contribute to their root branching capacity. We try to obtain insight into how land plants have acquired an increasing root branching plasticity during evolution that contributed to the successful colonization of our planet by seed plants.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Embryophyta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo
19.
Curr Opin Biotechnol ; 50: 166-173, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29414056

RESUMEN

Nitrogen is one of the most important nutrients for plant growth and hence heavily applied in agricultural systems via fertilization. Nitrification, that is, the conversion of ammonium via nitrite to nitrate by soil microorganisms, however, leads to nitrate leaching and gaseous nitrous oxide production and as such to an up to 50% loss of nitrogen availability for the plant. Nitrate leaching also results in eutrophication of groundwater, drinking water and recreational waters, toxic algal blooms and biodiversity loss, while nitrous oxide is a greenhouse gas with a global warming potential 300× greater than carbon dioxide. Logically, inhibition of nitrification is an important strategy used in agriculture to reduce nitrogen losses, and contributes to a more environmental-friendly practice. However, recently identified and crucial players in nitrification, that is, ammonia-oxidizing archaea and comammox bacteria, seem to be under-investigated in this respect. In this review, we give an update on the different pathways in ammonia oxidation, the relevance for agriculture and the interaction with nitrification inhibitors. As such, we hope to pinpoint possible strategies to optimize the efficiency of nitrification inhibition.


Asunto(s)
Agricultura , Nitrificación , Suelo , Amoníaco/metabolismo , Bacterias/metabolismo , Oxidación-Reducción
20.
Dev Cell ; 41(1): 5-7, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28399400

RESUMEN

Plants assemble beneficial root-associated microbiomes to support growth, especially in nutrient-poor conditions. To do so, however, plants have to suppress their immune system. Reporting in Nature, Castrillo et al. (2017) identified PHOSPHATE STARVATION RESPONSE1 (PHR1) as a central regulator in this balance between nutrient stress response and immune regulation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Fosfatos , Raíces de Plantas , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA