Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Transl Androl Urol ; 11(7): 929-942, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35958897

RESUMEN

Background: Routinely used clinical scanners, such as computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US), are unable to distinguish between aggressive and indolent tumor subtypes in masses localized to the kidney, often leading to surgical overtreatment. The results of the current investigation demonstrate that chemical differences, detected in human kidney biopsies using two-dimensional COrrelated SpectroscopY (2D L-COSY) and evaluated using multivariate statistical analysis, can distinguish these subtypes. Methods: One hundred and twenty-six biopsy samples from patients with a confirmed enhancing kidney mass on abdominal imaging were analyzed as part of the training set. A further forty-three samples were used for model validation. In patients undergoing radical nephrectomy, biopsies of non-cancer kidney cortical tissue were also collected as a non-cancer control group. Spectroscopy data were analyzed using multivariate statistical analysis, including principal component analysis (PCA) and orthogonal projection to latent structures with discriminant analysis (OPLS-DA), to identify biomarkers in kidney cancer tissue that was also classified using the gold-standard of histopathology. Results: The data analysis methodology showed good separation between clear cell renal cell carcinoma (ccRCC) versus non-clear cell RCC (non-ccRCC) and non-cancer cortical tissue from the kidneys of tumor-bearing patients. Variable Importance for the Projection (VIP) values, and OPLS-DA loadings plots were used to identify chemical species that correlated significantly with the histopathological classification. Model validation resulted in the correct classification of 37/43 biopsy samples, which included the correct classification of 15/17 ccRCC biopsies, achieving an overall predictive accuracy of 86%, Those chemical markers with a VIP value >1.2 were further analyzed using univariate statistical analysis. A subgroup analysis of 47 tumor tissues arising from T1 tumors revealed distinct separation between ccRCC and non-ccRCC tissues. Conclusions: This study provides metabolic insights that could have future diagnostic and/or clinical value. The results of this work demonstrate a clear separation between clear cell and non-ccRCC and non-cancer kidney tissue from tumor-bearing patients. The clinical translation of these results will now require the development of a one-dimensional (1D) magnetic resonance spectroscopy (MRS) protocol, for the kidney, using an in vivo clinical MRI scanner.

2.
Front Neuroimaging ; 1: 831216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37555159

RESUMEN

Response to pain therapy is currently by patient self-report. We demonstrate that by evaluating the neurochemistry of a patient, using two-dimensional Correlated SpectroscopY (2D COSY) in a 3T MRI scanner, response to therapy can be recorded. A chronic temporomandibular joint (TMJ) pain patient was evaluated by a pain physician specializing in temporomandibular disorders (TMD), and by 2D COSY, before, and 6 days after treatment with Botulinum Toxin A. Prior to treatment the self-reported pain score was 8/10 and reduced to 0/10 within 24 h of treatment. The neurochemistry of the patient prior to treatment was typical of chronic pain. In particular, the Fuc-α(1-2) glycans were affected. Following treatment, the substrates, α-L Fucose, were elevated and the Fuc-α(1-2) glycans repopulated. The depletion of the molecule assigned the glutathione cysteine moiety, with chronic pain, is indicative of a Glutathione redox imbalance linked to neurodegeneration. This new approach to monitor pain could help discriminate the relative contributions in the complex interplay of the sensory and affective (emotional suffering) components of pain leading to appropriate individualized pharmaceutical drug regimens.

3.
Magn Reson Med ; 82(2): 527-550, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30919510

RESUMEN

Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/metabolismo , Consenso , Humanos , Protones
4.
Alzheimers Res Ther ; 7(1): 13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25780390

RESUMEN

INTRODUCTION: The goal was to identify which neurochemicals differ in professional athletes with repetitive brain trauma (RBT) when compared to healthy controls using a relatively new technology, in vivo Localized COrrelated SpectroscopY (L-COSY). METHODS: To achieve this, L-COSY was used to examine five former professional male athletes with 11 to 28 years of exposure to contact sports. Each athlete who had had multiple symptomatic concussions and repetitive sub concussive trauma during their career was assessed by an experienced neuropsychologist. All athletes had clinical symptoms including headaches, memory loss, confusion, impaired judgment, impulse control problems, aggression, and depression. Five healthy men, age and weight matched to the athlete cohort and with no history of brain trauma, were recruited as controls. Data were collected from the posterior cingulate gyrus using a 3 T clinical magnetic resonance scanner equipped with a 32 channel head coil. RESULTS: The variation of the method was calculated by repeated examination of a healthy control and phantom and found to be 10% and 5%, respectively, or less. The L-COSY measured large and statistically significant differences (P ≤0.05), between healthy controls and those athletes with RBT. Men with RBT showed higher levels of glutamine/glutamate (31%), choline (65%), fucosylated molecules (60%) and phenylalanine (46%). The results were evaluated and the sample size of five found to achieve a significance level P = 0.05 and a power of 90%. Differences in N-acetyl aspartate and myo-inositol between RBT and controls were small and were not statistically significance. CONCLUSIONS: A study of a small cohort of professional athletes, with a history of RBT and symptoms of chronic traumatic encephalopathy when compared with healthy controls using 2D L-COSY, showed elevations in brain glutamate/glutamine and choline as recorded previously for early traumatic brain injury. For the first time increases in phenylalanine and fucose are recorded in the brains of athletes with RBT. Larger studies utilizing the L-COSY method may offer an in-life method of diagnosis and personalized approach for monitoring the acute effects of mild traumatic brain injury and the chronic effects of RBT.

5.
Radiology ; 270(3): 658-79, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24568703

RESUMEN

A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.


Asunto(s)
Biomarcadores/metabolismo , Enfermedades del Sistema Nervioso Central/diagnóstico , Espectroscopía de Resonancia Magnética/métodos , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/patología , Humanos
8.
J Magn Reson Imaging ; 33(6): 1447-55, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21591015

RESUMEN

PURPOSE: To describe an enhanced version of a localized correlation spectroscopy (L-COSY) by introducing adiabatic radiofrequency (RF) pulses for localization in two dimensions. Adiabatic pulses will improve slice selection profile and reduce chemical shift artifacts. Optimized Mao and adiabatic hyperbolic secant pulses are tested in vivo. MATERIALS AND METHODS: Region of interest is localized by a 90° nonselective adiabatic RF pulse followed by two pairs of adiabatic RF pulses and a terminal 90° RF sinc pulse. Slice profiles for both refocusing pulses and chemical shift artifacts are measured in a water-oil phantom for L-COSY and AL-COSY. In vivo results of both COSY sequences are shown from muscle and brain on a 3 Tesla (T) scanner. RESULTS: Chemical shift artifacts were reduced with AL-COSY compared with L-COSY. Slice profiles of adiabatic pulses were found to be sharper and more symmetrical than those of traditional Mao pulses. One-dimensional (1D) phantom studies showed longer T2 values using AL-COSY sequence. Comparison of 2D spectra obtained revealed spectroscopic peak volume improvements in AL-COSY and less residual water. In vivo 1D comparison showed more inphase and sharper peaks in AL-COSY spectrum. CONCLUSION: The AL-COSY sequence is an improved sequence due to sharper slice selection profiles, reduction of chemical shift artifacts, peak volume improvements in 2D techniques, and less J-modulation.


Asunto(s)
Encéfalo/patología , Espectroscopía de Resonancia Magnética/métodos , Músculo Esquelético/patología , Músculos/patología , Adulto , Artefactos , Humanos , Lípidos/química , Masculino , Modelos Teóricos , Fantasmas de Imagen , Ondas de Radio , Espectrofotometría/métodos
9.
Radiology ; 259(2): 540-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21357517

RESUMEN

PURPOSE: To develop an in vivo two-dimensional localized correlation spectroscopy technique with which to monitor the biochemistry of the human brain and the pathologic characteristics of diseases in a clinically applicable time, including ascertainment of appropriate postprocessing parameters with which to allow diagnostic and prognostic molecules to be measured, and to investigate how much of the chemical information, known to be available from malignant cultured cells, could be recorded in vivo from human brain. MATERIALS AND METHODS: The study was approved by the institutional review board and was compliant with HIPAA. With use of a 3.0-T clinical magnetic resonance (MR) unit and a 32-channel head coil, localized correlation spectroscopy was performed in six healthy control subjects and six patients with glioblastoma multiforme (GBM) with an acquisition time of 11 minutes. Two-dimensional spectra were processed and analyzed and peak volume ratios were tabulated. The data used were proved to be normally distributed by passing the Shapiro-Wilk normality test. The first row of the spectra was extracted to examine diagnostic features. The pathologic characteristics and grade of each GBM were determined after biopsy or surgery. Statistically significant differences were assessed by using a t test. RESULTS: The localized correlation spectroscopy method assigned biochemical species from the healthy human brain. The correlation spectra of GBM were of sufficiently high quality that many of the cross peaks, recorded previously from malignant cell models in vitro, were observed, demonstrating a statistically significant difference (P < .05) between the cross peak volumes measured for healthy subjects and those with GBM (which include lipid, alanine, N-acetylaspartate, γ-aminobutyric acid, glutamine and glutamate, glutathione, aspartate, lysine, threonine, total choline, glycerophosphorylcholine, myo-inositol, imidazole, uridine diphosphate glucose, isocitrate, lactate, and fucose). The first row of the spectra was found to contain diagnostic features. CONCLUSION: Localized correlation spectroscopy of the human brain at 3.0 T with use of a 32-channel head coil was performed in 11 minutes and provided information about neurotransmitters, metabolites, lipids, and macromolecules. The method was able to help differentiate healthy brain from the biochemical signature of GBM in vivo. This method may, in the future, reduce the need for biopsy and is now applicable for the study of selected neurologic diseases.


Asunto(s)
Química Encefálica , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Medios de Contraste , Femenino , Glioblastoma/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Espectroscopía de Resonancia Magnética/instrumentación , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Estudios Prospectivos , Factores de Tiempo
10.
Magn Reson Med ; 64(6): 1542-56, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20890988

RESUMEN

Novel low-power adiabatic sequences are demonstrated for in vivo localized two-dimensional correlated MR spectroscopy, such as correlated spectroscopy and total correlated spectroscopy. The design is based on three new elements for in vivo two-dimensional MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for (i) localization (correlated spectroscopy and total correlated spectroscopy) and (ii) mixing (total correlated spectroscopy), and (iii) the use of longitudinal mixing (z-filter) for magnetization transfer during total correlated spectroscopy. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both total correlated spectroscopy mixing and localization. Longitudinal mixing improves considerably (fivefolds) the efficiency of total correlated spectroscopy transfer. These are markedly different from previous 1D editing total correlated spectroscopy sequences using spatially nonselective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semiadiabatic (adiabatic mixing with nonadiabatic localization) methods for two-dimensional total correlated spectroscopy are compared. Results are presented for simulations, phantoms, and in vivo two-dimensional spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge, this is the first demonstration of in vivo adiabatic two-dimensional total correlated spectroscopy and fully adiabatic two-dimensional correlated spectroscopy. It is expected that these methodological developments will advance the in vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Aumento de la Imagen/métodos , Espectroscopía de Resonancia Magnética/métodos , Algoritmos , Simulación por Computador , Humanos , Aumento de la Imagen/instrumentación , Espectroscopía de Resonancia Magnética/instrumentación , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador
11.
Radiol Clin North Am ; 48(5): 1075-88, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20868901

RESUMEN

Contrast-enhanced magnetic resonance imaging (MRI), MR spectroscopy, and nuclear medicine sestamibi imaging using technetium-99m methoxyisobutyl isonitrile or positron emission tomography (PET) techniques provide information beyond that of structural imaging by displaying tumor neoangiogenesis, tumor metabolites, increased numbers of tumor cellular mitochondria, and hypermetabolic tumor cells. Much needs to be learned at the molecular level of normal cellular pathways either suppressed or enhanced by tumor-specific molecular changes. These discoveries will allow realization of true individualized patient tumor detection, treatment, and surveillance.

13.
J Magn Reson ; 204(1): 91-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20206561

RESUMEN

AIM: This study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. METHOD: Six healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28cm diameter detunable birdcage coil for signal excitation and an 8.5cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4ms increment size) and eight averages per scan, with a total time of 17min. RESULTS: T1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. CONCLUSION: In vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.


Asunto(s)
Creatina/análisis , Lípidos/análisis , Espectroscopía de Resonancia Magnética/métodos , Músculo Esquelético/química , Adulto , Humanos , Masculino , Sensibilidad y Especificidad
14.
J Magn Reson ; 203(2): 283-93, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20163975

RESUMEN

The purpose of this work was to design and implement constant adiabaticity gradient modulated pulses that have improved slice profiles and reduced artifacts for spectroscopic imaging on 3T clinical scanners equipped with standard hardware. The newly proposed pulses were designed using the gradient offset independent adiabaticity (GOIA, Tannus and Garwood[13]) method using WURST modulation for RF and gradient waveforms. The GOIA-WURST pulses were compared with GOIA-HSn (GOIA based on nth-order hyperbolic secant) and FOCI (frequency offset corrected inversion) pulses of the same bandwidth and duration. Numerical simulations and experimental measurements in phantoms and healthy volunteers are presented. GOIA-WURST pulses provide improved slice profile that have less slice smearing for off-resonance frequencies compared to GOIA-HSn pulses. The peak RF amplitude of GOIA-WURST is much lower (40% less) than FOCI but slightly higher (14.9% more) to GOIA-HSn. The quality of spectra as shown by the analysis of lineshapes, eddy currents artifacts, subcutaneous lipid contamination and SNR is improved for GOIA-WURST. GOIA-WURST pulse tested in this work shows that reliable spectroscopic imaging could be obtained in routine clinical setup and might facilitate the use of clinical spectroscopy.


Asunto(s)
Aumento de la Imagen/instrumentación , Imagen por Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo
15.
AJR Am J Roentgenol ; 193(2): 367-76, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19620433

RESUMEN

OBJECTIVE: Personalized health care centers around the concept that each tumor and its host environment is unique; optimal treatment and expected response for any given woman presenting with a newly diagnosed breast cancer differ from the care and response of other women. CONCLUSION: As more is understood about the molecular subtypes of breast cancer and as development of targeted therapies progresses, the possibility of earlier treatment response assessment and even improved detection will be realized.


Asunto(s)
Neoplasias de la Mama/química , Neoplasias de la Mama/diagnóstico , Espectroscopía de Resonancia Magnética , Adulto , Anciano , Biopsia , Mama/química , Mama/citología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma in Situ/química , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Carcinoma Ductal/química , Carcinoma Ductal/genética , Carcinoma Ductal/patología , Diagnóstico Diferencial , Reacciones Falso Positivas , Femenino , Fibroma/diagnóstico , Fibroma/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Mamografía/métodos , Persona de Mediana Edad , Metástasis de la Neoplasia , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Tomografía de Emisión de Positrones , Valores de Referencia
16.
AJR Am J Roentgenol ; 193(1): 260-6, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19542422

RESUMEN

OBJECTIVE: The purposes of this study were to compare the apparent diffusion coefficient (ADC) of mucinous carcinoma of the breast with that of other breast tumors and to analyze correlations between signal intensity on diffusion-weighted images and the histologic features of mucinous carcinoma. SUBJECTS AND METHODS: Two hundred seventy-six patients with 277 lesions, including 15 mucinous carcinomas (13 pure type, two mixed type), 204 other malignant tumors, and 58 benign lesions, were examined with 1.5-T MRI at b values of 0 and 1,500 s/mm(2). The correlations between cellularity and ADC, homogeneity of signal intensity on diffusion-weighted images, and histopathologic findings were analyzed. The difference was statistically significant (p < 0.05). RESULTS: The mean ADC of mucinous carcinoma (1.8 +/- 0.4 x 10(-3) mm(2)/s) was statistically higher than that of benign lesions (1.3+/- 0.3 x 10(-3) mm(2)/s) and other malignant tumors (0.9 +/- 0.2 x 10(-3) mm(2)/s) (p < 0.001). The ADC of pure type mucinous carcinoma (1.8 +/- 0.3 x 10(-3) mm(2)/s) was higher than that of mixed type mucinous carcinoma (1.2 +/- 0.2 x 10(-3) mm(2)/s) (p < 0.001) and other histologic types (p > 0.05). The correlation between mean cellularity and the ADC of mucinous carcinoma was significant (rho(s) = -0.754; p = 0.001). The homogeneity of signal intensity on diffusion-weighted images correlated with the homogeneity of histologic structures of mucinous carcinoma (p < 0.001; kappa = 0.826). CONCLUSION: Mucinous carcinoma can be clearly differentiated from other breast tumors on the basis of ADC. The low signal intensity of mucinous carcinoma on diffusion-weighted images appears to reflect the presence of mucin and low cellularity. High signal intensity on diffusion-weighted images may reflect the presence of fibrovascular bundles, increased cell density, or a combination of these features.


Asunto(s)
Adenocarcinoma Mucinoso/patología , Algoritmos , Neoplasias de la Mama/patología , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Aumento de la Imagen/métodos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estadística como Asunto
17.
Acad Radiol ; 16(1): 22-7, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19064208

RESUMEN

RATIONALE AND OBJECTIVES: The authors present their initial experience using a 3-T whole-body scanner equipped with a 128-channel coil applied to lung motion assessment. Recent improvements in fast magnetic resonance imaging (MRI) technology have enabled several trials of free-breathing three-dimensional (3D) imaging of the lung. A large number of image frames necessarily increases the difficulty of image analysis and therefore warrants automatic image processing. However, the intensity homogeneities of images of prior dynamic 3D lung MRI studies have been insufficient to use such methods. In this study, initial data were obtained at 3 T with a 128-channel coil that demonstrate the feasibility of acquiring multiple sets of 3D pulmonary scans during free breathing and that have sufficient quality to be amenable to automatic segmentation. MATERIALS AND METHODS: Dynamic 3D images of the lungs of two volunteers were acquired with acquisition times of 0.62 to 0.76 frames/s and an image matrix of 128 x 128, with 24 to 30 slice encodings. The volunteers were instructed to take shallow and deep breaths during the scans. The variation of lung volume was measured from the segmented images. RESULTS: Dynamic 3D images were successfully acquired for both respiratory conditions for each subject. The images showed whole-lung motion, including lifting of the chest wall and the displacement of the diaphragm, with sufficient contrast to distinguish these structures from adjacent tissues. The average time to complete segmentation for one 3D image was 4.8 seconds. The tidal volume measured was consistent with known tidal volumes for healthy subjects performing deep-breathing maneuvers. The temporal resolution was insufficient to measure tidal volumes for shallow breathing. CONCLUSION: This initial experience with a 3-T whole-body scanner and a 128-channel coil showed that the scanner and imaging protocol provided dynamic 3D images with spatial and temporal resolution sufficient to delineate the diaphragmatic domes and chest wall during active breathing. In addition, the intensity homogeneities and signal-to-noise ratio were adequate to perform automatic segmentation.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Pulmón/anatomía & histología , Pulmón/fisiología , Imagen por Resonancia Magnética/instrumentación , Movimiento/fisiología , Mecánica Respiratoria/fisiología , Adulto , Algoritmos , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Humanos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
19.
Anesth Analg ; 102(4): 1164-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16551917

RESUMEN

Magnetic resonance (MR) spectroscopy is a noninvasive technique that can be used to detect and measure the concentration of metabolites and neurotransmitters in the brain and other organs. We used in vivo (1)H MR spectroscopy in subjects with low back pain compared with control subjects to detect alterations in biochemistry in three brain regions associated with pain processing. A pattern recognition approach was used to determine whether it was possible to discriminate accurately subjects with low back pain from control subjects based on MR spectroscopy. MR spectra were obtained from the prefrontal cortex, anterior cingulate cortex, and thalamus of 32 subjects with low back pain and 33 control subjects without pain. Spectra were analyzed and compared between groups using a pattern recognition method (Statistical Classification Strategy). Using this approach, it was possible to discriminate between subjects with low back pain and control subjects with accuracies of 100%, 99%, and 97% using spectra obtained from the anterior cingulate cortex, thalamus, and prefrontal cortex, respectively. These results demonstrate that MR spectroscopy, in combination with an appropriate pattern recognition approach, is able to detect brain biochemical changes associated with chronic pain with a high degree of accuracy.


Asunto(s)
Encéfalo/metabolismo , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Giro del Cíngulo/metabolismo , Humanos , Dimensión del Dolor/métodos , Corteza Prefrontal/metabolismo , Tálamo/metabolismo
20.
Ann Surg Oncol ; 12(11): 943-9, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16177860

RESUMEN

BACKGROUND: Nonsurgical assessment of sentinel nodes (SNs) would offer advantages over surgical SN excision by reducing morbidity and costs. Proton magnetic resonance spectroscopy (MRS) of fine-needle aspirate biopsy (FNAB) specimens identifies melanoma lymph node metastases. This study was undertaken to determine the accuracy of the MRS method and thereby establish a basis for the future development of a nonsurgical technique for assessing SNs. METHODS: FNAB samples were obtained from 118 biopsy specimens from 77 patients during SN biopsy and regional lymphadenectomy. The specimens were histologically evaluated and correlated with MRS data. Histopathologic analysis established that 56 specimens contained metastatic melanoma and that 62 specimens were benign. A linear discriminant analysis-based classifier was developed for benign tissues and metastases. RESULTS: The presence of metastatic melanoma in lymph nodes was predicted with a sensitivity of 92.9%, a specificity of 90.3%, and an accuracy of 91.5% in a primary data set. In a second data set that used FNAB samples separate from the original tissue samples, melanoma metastases were predicted with a sensitivity of 87.5%, a specificity of 90.3%, and an accuracy of 89.1%, thus supporting the reproducibility of the method. CONCLUSIONS: Proton MRS of FNAB samples may provide a robust and accurate diagnosis of metastatic disease in the regional lymph nodes of melanoma patients. These data indicate the potential for SN staging of melanoma without surgical biopsy and histopathological evaluation.


Asunto(s)
Ganglios Linfáticos/patología , Espectroscopía de Resonancia Magnética , Melanoma/diagnóstico , Melanoma/secundario , Biopsia con Aguja Fina , Humanos , Metástasis Linfática , Protones , Sensibilidad y Especificidad , Biopsia del Ganglio Linfático Centinela
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA