Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(6): 503, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700640

RESUMEN

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno , Fósforo , Suelo , Triticum , Suelo/química , Nitrógeno/análisis , Fósforo/análisis , Fertilizantes/análisis , Agricultura/métodos , Nutrientes/análisis , Carbono/análisis
2.
Environ Monit Assess ; 195(2): 319, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36683118

RESUMEN

This study aims to compare three popular machine learning (ML) algorithms including random forest (RF), boosting regression tree (BRT), and multinomial logistic regression (MnLR) for spatial prediction of groundwater quality classes and mapping it for salinity hazard. Three hundred eighty-six groundwater samples were collected from an agriculturally intensive area in Fars Province, Iran, and nine hydro-chemical parameters were defined and interpreted. Variance inflation factor and Pearson's correlations were used to check collinearity between variables. Thereinafter, the performance of ML models was evaluated by statistical indices, namely, overall accuracy (OA) and Kappa index obtained from the confusion matrix. The results showed that the RF model was more accurate than other models with the slight difference. Moreover, the analysis of relative importance also indicated that sodium adsorption ratio (SAR) and pH have the most impact parameters in explaining groundwater quality classes, respectively. In this research, applied ML algorithms along with the hydro-chemical parameters affecting the quality of ground water can lead to produce spatial distribution maps with high accuracy for managing irrigation practice.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Algoritmos , Bosques Aleatorios , Minería de Datos , Calidad del Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA