RESUMEN
Peptidyl arginine deiminases (PADs) are important enzymes in many diseases, especially those involving inflammation and autoimmunity. Despite many years of effort, developing isoform-specific inhibitors has been a challenge. We describe herein the discovery of a potent, noncovalent PAD2 inhibitor, with selectivity over PAD3 and PAD4, from a DNA-encoded library. The biochemical and biophysical characterization of this inhibitor and two noninhibitory binders indicated a novel, Ca2+ competitive mechanism of inhibition. This was confirmed via X-ray crystallographic analysis. Finally, we demonstrate that this inhibitor selectively inhibits PAD2 in a cellular context.
Asunto(s)
Inhibidores Enzimáticos , Arginina Deiminasa Proteína-Tipo 2 , Humanos , Regulación Alostérica/efectos de los fármacos , Cristalografía por Rayos X , Arginina Deiminasa Proteína-Tipo 2/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Descubrimiento de Drogas , Calcio/metabolismoRESUMEN
We describe a protein proximity inducing therapeutic modality called Regulated Induced Proximity Targeting Chimeras or RIPTACs: heterobifunctional small molecules that elicit a stable ternary complex between a target protein (TP) selectively expressed in tumor cells and a pan-expressed protein essential for cell survival. The resulting co-operative protein-protein interaction (PPI) abrogates the function of the essential protein, thus leading to death selectively in cells expressing the TP. This approach leverages differentially expressed intracellular proteins as novel cancer targets, with the advantage of not requiring the target to be a disease driver. In this chemical biology study, we design RIPTACs that incorporate a ligand against a model TP connected via a linker to effector ligands such as JQ1 (BRD4) or BI2536 (PLK1) or CDK inhibitors such as TMX3013 or dinaciclib. RIPTACs accumulate selectively in cells expressing the HaloTag-FKBP target, form co-operative intracellular ternary complexes, and induce an anti-proliferative response in target-expressing cells.
Asunto(s)
Antineoplásicos , Proteínas de Ciclo Celular , Bibliotecas de Moléculas Pequeñas , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Proliferación Celular/efectos de los fármacos , Triazoles/química , Triazoles/farmacología , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Azepinas/farmacología , Azepinas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Indolizinas/química , Indolizinas/farmacología , Línea Celular Tumoral , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ligandos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Compuestos Heterocíclicos con 2 Anillos/farmacología , Compuestos Heterocíclicos con 2 Anillos/química , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas que Contienen Bromodominio , Óxidos N-Cíclicos , Compuestos de PiridinioRESUMEN
The CC chemokine receptor 6 (CCR6) is a potential target for chronic inflammatory diseases. Previously, we reported an active CCR6 structure in complex with its cognate chemokine CCL20, revealing the molecular basis of CCR6 activation. Here, we present two inactive CCR6 structures in ternary complexes with different allosteric antagonists, CCR6/SQA1/OXM1 and CCR6/SQA1/OXM2. The oxomorpholine analogues, OXM1 and OXM2 are highly selective CCR6 antagonists which bind to an extracellular pocket and disrupt the receptor activation network. An energetically favoured U-shaped conformation in solution that resembles the bound form is observed for the active analogues. SQA1 is a squaramide derivative with close-in analogues reported as antagonists of chemokine receptors including CCR6. SQA1 binds to an intracellular pocket which overlaps with the G protein site, stabilizing a closed pocket that is a hallmark of inactive GPCRs. Minimal communication between the two allosteric pockets is observed, in contrast to the prevalent allosteric cooperativity model of GPCRs. This work highlights the versatility of GPCR antagonism by small molecules, complementing previous knowledge of CCR6 activation, and sheds light on drug discovery targeting CCR6.
Asunto(s)
Receptores CCR6 , Receptores CCR6/metabolismo , Receptores CCR6/química , Humanos , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Unión Proteica , Sitios de Unión , Modelos Moleculares , Cristalografía por Rayos XRESUMEN
Bridged bicycloalkanes such as bicyclo[1.1.1]pentanes (BCPs) and bicyclo[3.1.1]heptanes (BCHeps) are important motifs in contemporary drug design due to their potential to act as bioisosteres of disubstituted benzene rings, often resulting in compounds with improved physicochemical and pharmacokinetic properties. Access to such motifs with proximal nitrogen atoms (i.e. α-amino/amido bicycloalkanes) is highly desirable for drug discovery applications, but their synthesis is challenging. Here we report an approach to α-amino BCPs and BCHeps through the visible-light enabled addition of α-amino radicals to the interbridgehead C-C bonds of [1.1.1] and [3.1.1]propellane respectively. The reaction proceeds under exceptionally mild conditions and displays broad substrate scope, providing access to an array of medicinally-relevant BCP and BCHep products. Experimental and computational mechanistic studies provide evidence for a radical chain pathway which depends critically on the stability of the α-amino radical, as well as effective catalyst turnover.
RESUMEN
Lufotrelvir was designed as a first in class 3CL protease inhibitor to treat COVID-19. Development of lufotrelvir was challenged by its relatively poor stability due to its propensity to epimerize and degrade. Key elements of process development included improvement of the supply routes to the indole and lactam fragments, a Claisen addition to homologate the lactam, and a subsequent phosphorylation reaction to prepare the prodrug as well as identification of a DMSO solvated form of lufotrelvir to enable long-term storage. As a new approach to preparing the indole fragment, a Cu-catalyzed C-O coupling using oxalamide ligands was demonstrated. The control of process-related impurities was essential to accommodate the parenteral formulation. Isolation of an MEK solvate followed by the DMSO solvate ensured that all impurities were controlled appropriately.
RESUMEN
Four-membered heterocycles offer exciting potential as small polar motifs in medicinal chemistry but require further methods for incorporation. Photoredox catalysis is a powerful method for the mild generation of alkyl radicals for C-C bond formation. The effect of ring strain on radical reactivity is not well understood, with no studies that address this question systematically. Examples of reactions that involve benzylic radicals are rare, and their reactivity is challenging to harness. This work develops a radical functionalization of benzylic oxetanes and azetidines using visible light photoredox catalysis to prepare 3-aryl-3-alkyl substituted derivatives and assesses the influence of ring strain and heterosubstitution on the reactivity of small-ring radicals. 3-Aryl-3-carboxylic acid oxetanes and azetidines are suitable precursors to tertiary benzylic oxetane/azetidine radicals which undergo conjugate addition into activated alkenes. We compare the reactivity of oxetane radicals to other benzylic systems. Computational studies indicate that Giese additions of unstrained benzylic radicals into acrylates are reversible and result in low yields and radical dimerization. Benzylic radicals as part of a strained ring, however, are less stable and more π-delocalized, decreasing dimer and increasing Giese product formation. Oxetanes show high product yields due to ring strain and Bent's rule rendering the Giese addition irreversible.
RESUMEN
While specific cell signaling pathway inhibitors have yielded great success in oncology, directly triggering cancer cell death is one of the great drug discovery challenges facing biomedical research in the era of precision oncology. Attempts to eradicate cancer cells expressing unique target proteins, such as antibody-drug conjugates (ADCs), T-cell engaging therapies, and radiopharmaceuticals have been successful in the clinic, but they are limited by the number of targets given the inability to target intracellular proteins. More recently, heterobifunctional small molecules such as Proteolysis Targeting Chimera (PROTACs) have paved the way for protein proximity inducing therapeutic modalities. Here, we describe a proof-of-concept study using novel heterobifunctional small molecules called Regulated Induced Proximity Targeting Chimeras or RIPTACs, which elicit a stable ternary complex between a target protein selectively expressed in cancer tissue and a pan-expressed protein essential for cell survival. The resulting cooperative protein:protein interaction (PPI) abrogates the function of the essential protein, thus leading to cell death selectively in cells expressing the target protein. This approach not only opens new target space by leveraging differentially expressed intracellular proteins but also has the advantage of not requiring the target to be a driver of disease. Thus, RIPTACs can address non-target mechanisms of resistance given that cell killing is driven by inactivation of the essential protein. Using the HaloTag7-FKBP model system as a target protein, we describe RIPTACs that incorporate a covalent or non-covalent target ligand connected via a linker to effector ligands such as JQ1 (BRD4), BI2536 (PLK1), or multi-CDK inhibitors such as TMX3013 or dinaciclib. We show that these RIPTACs exhibit positive co-operativity, accumulate selectively in cells expressing HaloTag7-FKBP, form stable target:RIPTAC:effector trimers in cells, and induce an anti-proliferative response in target-expressing cells. We propose that RIPTACs are a novel heterobifunctional therapeutic modality to treat cancers that are known to selectively express a specific intracellular protein.
RESUMEN
Annulations that combine diacceptors with bis-nucleophiles are uncommon. Here, we report the synthesis of 1,4-dioxanes from 3-aryloxetan-3-ols, as 1,2-bis-electrophiles and 1,2-diols. Brønsted acid Tf2NH catalyzes both the selective activation of the oxetanol, to form an oxetane carbocation that reacts with the diol, and intramolecular ring opening of the oxetane. High regio- and diastereoselectivity are achieved with unsymmetrical diols. The substituted dioxanes and fused bicyclic products present interesting motifs for drug discovery and can be further functionalized.
Asunto(s)
Alcoholes , Dioxanos , Catálisis , EstereoisomerismoRESUMEN
Bioisosteres provide valuable design elements that medicinal chemists can use to adjust the structural and pharmacokinetic characteristics of bioactive compounds towards viable drug candidates. Aryl oxetane amines offer exciting potential as bioisosteres for benzamides-extremely common pharmacophores-but are rarely examined due to the lack of available synthetic methods. Here we describe a class of reactions for sulfonyl fluorides to form amino-oxetanes by an alternative pathway to the established SuFEx (sulfonyl-fluoride exchange) click reactivity. A defluorosulfonylation forms planar oxetane carbocations simply on warming. This disconnection, comparable to a typical amidation, will allow the application of vast existing amine libraries. The reaction is tolerant to a wide range of polar functionalities and is suitable for array formats. Ten oxetane analogues of bioactive benzamides and marketed drugs are prepared. Kinetic and computational studies support the formation of an oxetane carbocation as the rate-determining step, followed by a chemoselective nucleophile coupling step.
RESUMEN
Bicyclo[1.1.1]pentanes (BCPs) are important in drug design as sp3-rich bioisosteres of arenes and tert-butyl groups; however, the preparation of BCPs with adjacent quaternary carbons is barely known. We report a facile synthesis of α-quaternary BCPs using organophotoredox and hydrogen atom transfer catalysis in which α-keto radicals, generated through oxidation of ß-ketocarbonyls, undergo efficient addition to [1.1.1]propellane. The BCP products can be transformed into a variety of useful derivatives, including enantioenriched BCPs featuring α-quaternary stereocenters.
RESUMEN
The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.
Asunto(s)
Hidrocarburos Aromáticos/química , Pentanos/química , Bioensayo , Cristalografía por Rayos X , Hepatocitos/metabolismo , Humanos , Concentración 50 Inhibidora , Pentanos/síntesis química , EstereoisomerismoRESUMEN
Bicyclo[1.1.1]pentylamines (BCPAs) are of growing importance to the pharmaceutical industry as sp3-rich bioisosteres of anilines and N-tert-butyl groups. Here we report a facile synthesis of 1,3-disubstituted BCPAs using a twofold radical functionalization strategy. Sulfonamidyl radicals, generated through fragmentation of α-iodoaziridines, undergo initial addition to [1.1.1]propellane to afford iodo-BCPAs; the newly formed C-I bond in these products is then functionalized via a silyl-mediated Giese reaction. This chemistry also translates smoothly to 1,3-disubstituted iodo-BCPs. A wide variety of radical acceptors and iodo-BCPAs are accommodated, providing straightforward access to an array of valuable aniline-like isosteres.
RESUMEN
Bicyclo[1.1.1]pentanes (BCPs) are important motifs in contemporary drug design as linear spacer units that improve pharmacokinetic profiles. The synthesis of BCPs featuring adjacent stereocenters is highly challenging, but desirable due to the fundamental importance of 3D chemical space in medicinal chemistry. Current methods to access these high-value chiral molecules typically involve transformations of pre-formed BCPs, and can display limitations in substrate scope. Here we describe an approach to synthesize α-chiral BCPs involving the direct, asymmetric addition of simple aldehydes to [1.1.1]propellane, the predominant BCP precursor. This is achieved by combining a photocatalyst and an organocatalyst to generate a chiral α-iminyl radical cation intermediate, which installs a stereocenter simultaneously with ring-opening of [1.1.1]propellane. The reaction proceeds under mild conditions, displays broad scope, and provides an array of α-chiral BCPs in high yield and enantioselectivity. We also present a theoretical model for stereoinduction in this mode of photoredox organocatalysis.
Asunto(s)
Pentanos/síntesis química , Aldehídos/química , Catálisis , Estructura Molecular , EstereoisomerismoRESUMEN
Oxetanes have received increasing interest in medicinal chemistry as attractive polar and low molecular weight motifs. The application of oxetanes as replacements for methylene, methyl, gem-dimethyl and carbonyl groups has been demonstrated to often improve chemical properties of target molecules for drug discovery purposes. The investigation of the properties of 3,3-diaryloxetanes, particularly of interest as a benzophenone replacement, remains largely unexplored. With recent synthetic advances in accessing this motif we studied the effects of 3,3-diaryloxetanes on the physicochemical properties of 'drug-like' molecules. Here, we describe our efforts in the design and synthesis of a range of drug-like compounds for matched molecular pair analysis to investigate the viability of the 3,3-diaryloxetane motif as a replacement group in drug discovery. We conclude that the properties of the diaryloxetanes and ketones are similar, and generally superior to related alkyl linkers, and that diaryloxetanes provide a potentially useful new design element.
RESUMEN
1,3-Disubstituted bicyclo[1.1.1]pentanes (BCPs) are important motifs in drug design as surrogates for p-substituted arenes and alkynes. Access to all-carbon disubstituted BCPs via cross-coupling has to date been limited to use of the BCP as the organometallic component, which restricts scope due to the harsh conditions typically required for the synthesis of metallated BCPs. Here we report a general method to access 1,3-C-disubstituted BCPs from 1-iodo-bicyclo[1.1.1]pentanes (iodo-BCPs) by direct iron-catalyzed cross-coupling with aryl and heteroaryl Grignard reagents. This chemistry represents the first general use of iodo-BCPs as electrophiles in cross-coupling, and the first Kumada coupling of tertiary iodides. Benefiting from short reaction times, mild conditions, and broad scope of the coupling partners, it enables the synthesis of a wide range of 1,3-C-disubstituted BCPs including various drug analogues.
RESUMEN
Four-membered rings remain underexplored motifs despite offering attractive physicochemical properties for medicinal chemistry. Arylacetic acids bearing oxetanes, azetidines, and cyclobutanes are prepared in two steps: a catalytic Friedel-Crafts reaction from four-membered ring alcohol substrates, followed by mild oxidative cleavage. The suitability of the products as building blocks is reflected in their facile purification and amenability to derivatization. Examples include heteroaromatics and aryltriflates, as well as oxetane-derived profen drug analogues and a new endomorphin derivative containing an azetidine amino acid residue.
RESUMEN
Historically accessed through two-electron, anionic chemistry, ketones, alcohols, and amines are of foundational importance to the practice of organic synthesis. After placing this work in proper historical context, this Article reports the development, full scope, and a mechanistic picture for a strikingly different way of forging such functional groups. Thus, carboxylic acids, once converted to redox-active esters (RAEs), can be utilized as formally nucleophilic coupling partners with other carboxylic derivatives (to produce ketones), imines (to produce benzylic amines), or aldehydes (to produce alcohols). The reactions are uniformly mild, operationally simple, and, in the case of ketone synthesis, broad in scope (including several applications to the simplification of synthetic problems and to parallel synthesis). Finally, an extensive mechanistic study of the ketone synthesis is performed to trace the elementary steps of the catalytic cycle and provide the end-user with a clear and understandable rationale for the selectivity, role of additives, and underlying driving forces involved.
Asunto(s)
Alcoholes/química , Alcoholes/síntesis química , Aminas/química , Aminas/síntesis química , Cetonas/química , Cetonas/síntesis química , Técnicas de Química Sintética , Radicales Libres/químicaRESUMEN
New small-ring derivatives can provide valuable motifs in new chemical space for drug design. 3-Aryl-3-sulfanyl azetidines are synthesized directly from azetidine-3-ols in excellent yield by a mild Fe-catalyzed thiol alkylation. A broad range of thiols and azetidinols bearing electron-donating aromatics are successful, proceeding via an azetidine carbocation. The N-carboxybenzyl group is a requirement for good reactivity and enables the NH-azetidine to be revealed. Further reactions of the azetidine sulfides demonstrate their potential for incorporation in drug discovery programs.
RESUMEN
Bicyclo[1.1.1]pentanes (BCPs), useful surrogates for para-substituted arenes, alkynes, and tert-butyl groups in medicinal chemistry, are challenging to prepare when featuring stereogenic centers adjacent to the BCP. We report the development of an efficient route to α-chiral BCPs, via highly diastereoselective asymmetric enolate functionalization. We also describe the application of this chemistry to the synthesis of BCP analogues of phenylglycine and tarenflurbil, the single enantiomer of the NSAID flurbiprofen.