Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Life Sci ; 240: 117068, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751583

RESUMEN

AIMS: Bradycardia contributes to tachy-brady arrhythmias or sinus arrest during heart failure (HF). Sinoatrial node (SAN) adenosine A1 receptors (ADO A1Rs) are upregulated in HF, and adenosine is known to exert negative chronotropic effects on the SAN. Here, we investigated the role of A1R signaling at physiologically relevant ADO concentrations on HF SAN pacemaker cells. MAIN METHODS: Dogs with tachypacing-induced chronic HF and normal controls (CTL) were studied. SAN tissue was collected for A1R and GIRK mRNA quantification. SAN cells were isolated for perforated patch clamp recordings and firing rate (bpm), slope of slow diastolic depolarization (SDD), and maximum diastolic potential (MDP) were measured. Action potentials (APs) and currents were recorded before and after addition of 1 and 10 µM ADO. To assess contributions of A1R and G protein-coupled Inward Rectifier Potassium Current (GIRK) to ADO effects, APs were measured after the addition of DPCPX (selective A1R antagonist) or TPQ (selective GIRK blocker). KEY FINDINGS: A1R and GIRK mRNA expression were significantly increased in HF. In addition, ADO induced greater rate slowing and membrane hyperpolarization in HF vs CTL (p < 0.05). DPCPX prevented ADO-induced rate slowing in CTL and HF cells. The ADO-induced inward rectifying current, IKado, was observed significantly more frequently in HF than in CTL. TPQ prevented ADO-induced rate slowing in HF. SIGNIFICANCE: An increase in A1R and GIRK expression enhances IKAdo, causing hyperpolarization, and subsequent negative chronotropic effects in canine chronic HF at relevant [ADO]. GIRK blockade may be a useful strategy to mitigate bradycardia in HF.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacología , Adenosina/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Receptor de Adenosina A1/metabolismo , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Antagonistas del Receptor de Adenosina A1/farmacología , Animales , Venenos de Abeja/farmacología , Relojes Biológicos , Enfermedad Crónica , Perros , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/efectos de los fármacos , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Receptor de Adenosina A1/efectos de los fármacos , Xantinas/farmacología
2.
Life Sci ; 123: 61-71, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25596015

RESUMEN

AIMS: Ventricular arrhythmias are a common cause of death in patients with heart failure (HF). Structural and electrical abnormalities in the heart provide a substrate for such arrhythmias. Canine tachypacing-induced HF models of 4-6 weeks duration are often used to study pathophysiology and therapies for HF. We hypothesized that a chronic canine model of HF would result in greater electrical and structural remodeling than a short term model, leading to a more arrhythmogenic substrate. MAIN METHODS: HF was induced by ventricular tachypacing for one (short-term) or four (chronic) months to study remodeling. KEY FINDINGS: Left ventricular contractility was progressively reduced, while ventricular hypertrophy and interstitial fibrosis were evident at 4 month but not 1 month of HF. Left ventricular myocyte action potentials were prolonged after 4 (p<0.05) but not 1 month of HF. Repolarization instability and early afterdepolarizations were evident only after 4 months of HF (p<0.05), coinciding with a prolonged QTc interval (p<0.05). The transient outward potassium current was reduced in both HF groups (p<0.05). The outward component of the inward rectifier potassium current was reduced only in the 4 month HF group (p<0.05). The delayed rectifier potassium currents were reduced in 4 (p<0.05) but not 1 month of HF. Reactive oxygen species were increased at both 1 and 4 months of HF (p<0.05). SIGNIFICANCE: Reduced Ito, outward IK1, IKs, and IKr in HF contribute to EAD formation. Chronic, but not short term canine HF, results in the altered electrophysiology and repolarization instability characteristic of end-stage human HF.


Asunto(s)
Potenciales de Acción/fisiología , Arritmias Cardíacas/complicaciones , Insuficiencia Cardíaca/fisiopatología , Contracción Miocárdica/fisiología , Remodelación Ventricular/fisiología , Anfotericina B , Análisis de Varianza , Animales , Cartilla de ADN/genética , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Perros , Electrocardiografía , Espectroscopía de Resonancia por Spin del Electrón , Insuficiencia Cardíaca/etiología , Immunoblotting , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo
3.
PLoS One ; 9(10): e108824, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25271970

RESUMEN

The role of I(KCa) in cardiac repolarization remains controversial and varies across species. The relevance of the current as a therapeutic target is therefore undefined. We examined the cellular electrophysiologic effects of I(KCa) blockade in controls, chronic heart failure (HF) and HF with sustained atrial fibrillation. We used perforated patch action potential recordings to maintain intrinsic calcium cycling. The I(KCa) blocker (apamin 100 nM) was used to examine the role of the current in atrial and ventricular myocytes. A canine tachypacing induced model of HF (1 and 4 months, n = 5 per group) was used, and compared to a group of 4 month HF with 6 weeks of superimposed atrial fibrillation (n = 7). A group of age-matched canine controls were used (n = 8). Human atrial and ventricular myocytes were isolated from explanted end-stage failing hearts which were obtained from transplant recipients, and studied in parallel. Atrial myocyte action potentials were unchanged by I(KCa) blockade in all of the groups studied. I(KCa) blockade did not affect ventricular myocyte repolarization in controls. HF caused prolongation of ventricular myocyte action potential repolarization. I(KCa) blockade caused further prolongation of ventricular repolarization in HF and also caused repolarization instability and early afterdepolarizations. SK2 and SK3 expression in the atria and SK3 in the ventricle were increased in canine heart failure. We conclude that during HF, I(KCa) blockade in ventricular myocytes results in cellular arrhythmias. Furthermore, our data suggest an important role for I(KCa) in the maintenance of ventricular repolarization stability during chronic heart failure. Our findings suggest that novel antiarrhythmic therapies should have safety and efficacy evaluated in both atria and ventricles.


Asunto(s)
Potenciales de Acción/fisiología , Fibrilación Atrial/fisiopatología , Calcio/metabolismo , Insuficiencia Cardíaca/fisiopatología , Potasio/metabolismo , Animales , Fibrilación Atrial/metabolismo , Modelos Animales de Enfermedad , Perros , Corazón/fisiopatología , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
4.
Eur J Echocardiogr ; 10(7): 826-32, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19692424

RESUMEN

AIMS: To elucidate the usefulness of the early diastolic mitral flow propagation velocity (V(p)) obtained from colour M-mode Doppler for non-invasively assessing left-ventricular (LV) relaxation during atrial fibrillation (AF). METHODS AND RESULTS: Ten healthy adult dogs were studied to correlate V(p) with the invasive minimum value of the first derivative of LV pressure decay (dP/dt(min)) and the time constant of isovolumic LV pressure decay (tau) at baseline, during rapid and slow AF, and during AF after inducing myocardial infarction. There were significant positive and negative curvilinear relationships between V(p) and dP/dt(min) and tau, respectively, during rapid AF. After slowing the ventricular rate, the average value of V(p) increased, while dP/dt(min) increased and tau decreased. After inducing myocardial infarction, the average value of V(p) decreased, while dP/dt(min) decreased and tau increased. CONCLUSION: The non-invasively obtained V(p) evaluates LV relaxation even during AF regardless of ventricular rhythm or the presence of pathological changes.


Asunto(s)
Fibrilación Atrial/fisiopatología , Válvula Mitral/fisiopatología , Relajación Muscular/fisiología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/fisiología , Animales , Fibrilación Atrial/diagnóstico por imagen , Velocidad del Flujo Sanguíneo , Diástole , Perros , Ecocardiografía Doppler en Color , Válvula Mitral/diagnóstico por imagen , Disfunción Ventricular Izquierda/diagnóstico por imagen
5.
J Cardiovasc Electrophysiol ; 20(1): 85-92, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18775052

RESUMEN

INTRODUCTION: We assessed defibrillation strength shock-induced changes of the membrane time constant (tau) and membrane potential (DeltaVm) in intact rabbit hearts after administration of lidocaine, a sodium (Na(+)) channel blocker, or nifedipine, a L-type calcium (Ca(2+)) channel blocker. METHODS AND RESULTS: We optically mapped anterior, epicardial, electrical activity during monophasic shocks (+/-100, +/-130, +/-160, +/-190, and +/-220 V; 150 microF; 8 ms) applied at 25%, 50%, and 75% of the action potential duration via a shock lead system in Langendorff-perfused hearts. The protocol was run twice for each heart under control and after lidocaine (15 microM, n = 6) or nifedipine (2 microM, n = 6) addition. tau in the virtual electrode area away from the shock lead was approximated with single-exponential fits from a total of 121,125 recordings. The same data set was used to calculate DeltaVm. We found (1) Under all conditions, there is inverse relationship between tau and DeltaVm with respect to changes of shock strength, regardless of shock polarity and phase of application: a stronger shock resulted in a larger DeltaVm, which corresponded to a smaller tau (faster cellular response); (2) Lidocaine did not cause appreciable changes in either tau or DeltaVm versus control, and (3) Nifedipine significantly increased both tau and DeltaVm in the virtual cathode area; in contrast, in the virtual anode area, this effect depended on the phase of shock application. CONCLUSION: tau and DeltaVm are inversely related. Na(+) channel blocker has minimal impact on either tau or DeltaVm. Ca(2+) blocker caused polarity and phase-dependent significant changes in tau and DeltaVm.


Asunto(s)
Bloqueadores de los Canales de Calcio/administración & dosificación , Membrana Celular/fisiología , Cardioversión Eléctrica/métodos , Potenciales de la Membrana/fisiología , Modelos Cardiovasculares , Miocitos Cardíacos/fisiología , Bloqueadores de los Canales de Sodio/administración & dosificación , Animales , Membrana Celular/efectos de los fármacos , Simulación por Computador , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Cinética , Lidocaína/administración & dosificación , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Nifedipino/administración & dosificación , Conejos
6.
Circulation ; 112(19): 2904-11, 2005 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16260638

RESUMEN

BACKGROUND: We have previously demonstrated that selective atrioventricular nodal (AVN) vagal stimulation (AVN-VS) can be used to control ventricular rate during atrial fibrillation (AF) in acute experiments. However, it is not known whether this approach could provide a long-term treatment in conscious animals. Thus, this study reports the first observations on the long-term efficacy and safety of this novel approach to control ventricular rate during AF in chronically instrumented dogs. METHODS AND RESULTS: In 18 dogs, custom-made bipolar patch electrodes were sutured to the epicardial AVN fat pad for delivery of selective AVN-VS by a subcutaneously implanted nerve stimulator (pulse width 100 micros or 1 ms, frequency 20 or 160 Hz, amplitude 6 to 10 V). Fast-rate right atrial pacing (600 bpm) was used to induce and maintain AF. ECG, blood pressure, and body temperature were monitored telemetrically. One week after the induction of AF, AVN-VS was delivered and maintained for at least 5 weeks. It was found that AVN-VS had a consistent effect on ventricular rate slowing (on average 45+/-13 bpm) over the entire period of observation. Echocardiography showed improvement of cardiac indices with ventricular rate slowing. AVN-VS was well tolerated by the animals, causing no signs of distress or discomfort. CONCLUSIONS: Beneficial long-term ventricular rate slowing during AF can be achieved by implantation of a nerve stimulator attached to the epicardial AVN fat pad. This novel concept is an attractive alternative to other methods of rate control and may be applicable in a selected group of patients.


Asunto(s)
Fibrilación Atrial/terapia , Nodo Atrioventricular/inervación , Terapia por Estimulación Eléctrica/métodos , Nervio Vago/fisiología , Función Ventricular , Animales , Modelos Animales de Enfermedad , Perros , Telemetría
7.
Am J Physiol Heart Circ Physiol ; 287(5): H2016-22, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15284067

RESUMEN

Coupled pacing (CP), a method for controlling ventricular rate during atrial fibrillation (AF), consists of a single electrical stimulation applied to the ventricles after each spontaneous activation. CP results in a mechanical contraction rate approximately one-half the rate during AF. Paired stimulation in which two electrical stimuli are delivered to the ventricles has also been proposed as a therapy for heart failure. Although paired stimulation enhances contractility, it greatly increases energy consumption. The primary hypothesis of the present study is that CP improves cardiac function during acute AF without a similar increase in energy consumption because of the reduced rate of ventricular contractions. In a canine model, CP was applied during four stages: sinus rhythm (SR), acute AF, cardiac dysfunction (CD), and AF in the presence of cardiac dysfunction. The rate of ventricular contraction decreased in all four stages as the result of CP. In addition, we determined the changes in external cardiac work, myocardial oxygen consumption, and myocardial efficiency in the each of four stages. CP partially reversed the effects of AF and CD on external cardiac work, whereas myocardial oxygen consumption increased only moderately. In all stages but SR, CP increased myocardial efficiency because of the marked increases in cardiac work compared with the moderate increases in total energy consumed. Thus this pacing therapy may be a viable therapy for patients with concurrent atrial fibrillation and heart failure.


Asunto(s)
Fibrilación Atrial/fisiopatología , Estimulación Cardíaca Artificial/métodos , Corazón/fisiopatología , Enfermedad Aguda , Animales , Perros , Electrocardiografía , Contracción Miocárdica , Miocardio/metabolismo , Consumo de Oxígeno , Función Ventricular
8.
Cardiovasc Res ; 61(1): 45-55, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14732201

RESUMEN

OBJECTIVES: Atrioventricular node (AVN) modification is one of the alternatives for ventricular rate control in patients with drug refractory atrial fibrillation (AF). However, the underlying mechanisms, and in particular the role of the dual pathway electrophysiology is not clear. By using a novel index, His electrogram (HE) alternans, we have previously demonstrated in rabbits that both the slow (SP) and the fast pathways (FP) are involved in AVN conduction during AF. This electrophysiological-morphological study was designed to address the role of selective FP ablation on AVN conduction during AF. METHODS AND RESULTS: In 12 rabbit AVN preparations dual pathway conduction was confirmed by HE alternans during A1A2 pacing protocol, as well as during AF. On average 48% of the conducted beats during AF utilized the FP. Selective FP ablation (n=12) guided by HE alternans resulted in only-SP conduction, with longer AVN conduction time at basic beats, but without change of AVN effective refractory period (ERP). Interestingly, despite elimination of all FP-conducted beats during AF, the selective FP ablation allowed previously concealed SP beats to be conducted, resulting in little net effect on the ventricular rate (average His-His interval 199+/-10 ms before versus 201+/-13 ms after FP ablation, p>0.05). Morphological evidence indicated that FP ablation created lesions within the transitional cells of the superior approaches at the junction between the central fibrous body and the AVN. However, extension of FP ablation lesion into the compact AVN domain resulted in non-selective AVN modification and slowing of ventricular rate during AF. CONCLUSIONS: Despite its longer ERP, FP is responsible for a substantial number of ventricular beats during AF. However, selective FP ablation has a minor effect on ventricular rate. The most likely mechanism for this phenomenon is that FP ablation allows previously concealed SP beats to be conducted. On the other hand, ventricular rate slowdown could be achieved if FP ablations caused collateral damage in the compact node. This study highlights the usefulness of HE alternans as a novel tool to monitor dual pathway conduction during AF and to guide AVN modification.


Asunto(s)
Fibrilación Atrial/fisiopatología , Nodo Atrioventricular/fisiopatología , Animales , Fibrilación Atrial/terapia , Ablación por Catéter , Estimulación Eléctrica , Ventrículos Cardíacos/fisiopatología , Conejos
9.
Heart Rhythm ; 1(4): 482-9, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15851203

RESUMEN

OBJECTIVES: The aim of this study was to assess whether Frank-Starling mechanism has an independent effect on left ventricular (LV) performance in atrial fibrillation (AF). BACKGROUND: Ventricular performance in AF depends on variable contractility through the interval-force mechanism based on the ratio of preceding and pre-preceding RR intervals (RR(p)/RR(pp)). The impact of end-diastolic volume (EDV) variability, through the Frank-Starling mechanism, is not well understood. METHODS: We induced AF in 16 open chest dogs. RR intervals, LV pressure, LV volume, and aortic flow were collected for >400 beats during rapid AF (ventricular cycle length 292 +/- 66 ms). In six of the dogs, additional data were collected while average ventricular cycle length was prolonged from 258 +/- 34 ms to 445 +/- 80 ms by selective vagal nerve stimulation of the AV node. RESULTS: The relations of maximal LV power (LVPower) and peak LV pressure derivative (dP/dt) versus RR(p)/RR(pp) were fitted to the equation y = A * (1 - EXP (RR(p)/RR(pp)min - RR(p)/RR(pp))/C) and the residuals (RES) of these relations were analyzed. LVPower and dP/dt strongly correlated with RR(p)/RR(pp) (r(2) = 0.67 +/- 0.12 and 0.66 +/- 0.12, P < .0001 for all correlations). Importantly, RES-LVPower and RES-dP/dt showed linear correlation with EDV (r(2) = 0.20 +/- 0.14 and r(2) = 0.24 +/- 0.17, P < .01 for all correlations). In the six dogs with slowed average ventricular rate, the slope of both residual relationships (RES-LVPower vs EDV and RES- dP/dt vs EDV) decreased (P < .03 for both). CONCLUSIONS: The Frank-Starling mechanism contributes to ventricular performance in AF independently of the interval-force effects of the beat-to-beat variability in cardiac contractility. The Frank-Starling mechanism is sensitive to the average ventricular rate.


Asunto(s)
Fibrilación Atrial/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Contracción Miocárdica/fisiología , Miocardio , Función Ventricular Izquierda/fisiología , Potenciales de Acción , Animales , Fibrilación Atrial/terapia , Perros , Hemodinámica , Modelos Animales , Modelos Cardiovasculares , Función Ventricular
10.
Am J Physiol Heart Circ Physiol ; 286(1): H145-52, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12958036

RESUMEN

Left ventricular (LV) diastolic function during atrial fibrillation (AF) remains poorly understood due to the complex interaction of factors and beat-to-beat variability. The purpose of the present study was to elucidate the physiological determinants of beat-to-beat changes in LV diastolic function during AF. The RR intervals preceding a given cardiac beat were measured from the right ventricular electrogram in 12 healthy open-chest mongrel dogs during AF. Doppler echocardiography and LV pressure and volume beat-to-beat analyses were performed. The LV filling time (FT) and early diastolic mitral inflow velocity-time integral (E(vti)) were measured using the pulsed Doppler method. The LV end-diastolic volume (EDV), peak systolic LV pressure (LVP), minimum value of the first derivative of LV pressure curve (dP/dt(min)), and the time constant of LV pressure decay (tau) were evaluated with the use of a conductance catheter for 100 consecutive cardiac cycles. Beat-to-beat analysis revealed a cascade of important causal relations. LV-FT showed a significant positive linear relationship with E(vti) (r = 0.87). Importantly, there was a significant positive linear relationship between the RR interval and LV-EDV in the same cardiac beat (r = 0.53). Consequently, there was a positive linear relationship between LV-EDV and subsequent peak systolic LVP (r = 0.82). Furthermore, there were significant positive linear and negative curvilinear relationships between peak systolic LVP and dP/dt(min) (r = 0.95) and tau (r = -0.85), respectively, in the same cardiac beat. In addition, there was a significant negative curvilinear relationship between dP/dt(min) and tau (r = -0.86). We have concluded that the determinants of LV diastolic function in individual beats during AF depend strongly on the peak systolic LVP. This suggests that the major benefit of slower ventricular rate appears related to lengthening of LV filling interval, promoting subsequent higher peak systolic LVP and greater LV relaxation.


Asunto(s)
Fibrilación Atrial/fisiopatología , Función Ventricular Izquierda , Animales , Volumen Sanguíneo , Diástole , Perros , Ecocardiografía Doppler , Frecuencia Cardíaca , Presión , Sístole
11.
Pacing Clin Electrophysiol ; 26(12): 2213-8, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14675002

RESUMEN

The shape of the shock waveform influences defibrillation efficacy. However, the optimal combination between capacitance size and truncation/tilt which can determine monophasic waveform's shape, has not been determined for external defibrillation. The purpose of this study was to assess the effects of varying capacitance and tilt on external defibrillation using exponential monophasic waveforms. In a pig model of external defibrillation (n = 10, 30 +/- 6 kg), nine exponential monophasic waveforms combining three capacitance values (30 microF, 60 microF, and 120 microF) and three tilt values (55%, 75%, and 95%) were tested randomly. The energy and leading edge voltage at 50% defibrillation success (E50 and V50) were used to evaluate defibrillation efficacy. E50 and V50 were determined by the Bayesian technique. The lowest stored E50 for the 30microF, 60 microF, and 120 microF waveforms were 90 +/- 12 J (95% tilt), 106 +/- 45 J (55% tilt), and 107 +/- 52 J (75% tilt), respectively. The lowest V50 for the 30 microF, 60 microF, and 120 microF waveforms were 2,439 +/- 166 V (95% tilt), 1,849 +/- 375 V (55% tilt), and 1,301 +/- 322 V (75% tilt), respectively. The average current at external defibrillation threshold demonstrated a strength versus pulse duration relationship similar to that seen with pacing. Reducing capacitance has the same effect as truncating the waveform. The E50 is more sensitive to tilt values changes in larger capacitance waveforms. This study suggests that the optimal combination between capacitance and tilt may be 120 microF and 55%-75% for external defibrillation.


Asunto(s)
Cardioversión Eléctrica/métodos , Animales , Capacidad Eléctrica , Porcinos , Factores de Tiempo
12.
Am J Physiol Heart Circ Physiol ; 285(6): H2630-8, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12893639

RESUMEN

Atrial tachycardia (AT) and fibrillation (AF) result in rapid ventricular rates that are detrimental to optimal cardiac function. The purpose of this study was to determine whether the application of a coupled pacing (CP) regimen would improve ventricular function by decreasing the ventricular rate of mechanical contractions (VRMCs). We simulated AT by pacing either atrium at a rate that resulted in a rapid but regular ventricular rate in seven anesthetized dogs. AF was induced by increasing the atrial pacing rate until atrial activation did not follow the pacing. After the induction of either AT or AF, we applied CP after each intrinsic ventricular activation. We measured the VRMCs and left ventricular (LV) pressures and volumes via a pressure-conductance catheter. The marked reductions in VRMCs during CP resulted in increases in LV end-diastolic volume. The CP resulted in virtually no mechanical contractions, whereas the strength of contractions from the normal electrical activation increased. The increases in the positive LV rate of pressure development over time and LV ejection fraction during CP were the result of postextrasystolic potentiation. The average stroke work (area of the pressure-volume loops) increased as a result of CP during both AT and AF. Despite the large increases in stroke volume (approximately 2x) during CP, the changes in cardiac output were moderate because the VRMCs markedly decreased (approximately 1/2). We conclude that CP therapy may be a viable therapy for slowing the heart rate and improving cardiac performance in patients with AT and AF.


Asunto(s)
Fibrilación Atrial/fisiopatología , Fibrilación Atrial/terapia , Terapia por Estimulación Eléctrica/métodos , Marcapaso Artificial , Taquicardia Atrial Ectópica/fisiopatología , Taquicardia Atrial Ectópica/terapia , Enfermedad Aguda , Animales , Aorta/fisiología , Presión Sanguínea , Perros , Contracción Miocárdica/fisiología , Volumen Sistólico , Resistencia Vascular , Función Ventricular Izquierda
13.
Circulation ; 107(7): 1059-65, 2003 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-12600922

RESUMEN

BACKGROUND: Traditional tools to study dual-pathway atrioventricular nodal (AVN) electrophysiology are not applicable in subjects with permanent atrial fibrillation (AF). The presence of fast-pathway (FP) and slow-pathway (SP) wavefronts and their possible modification remain uncertain in this condition. We demonstrated previously that His electrogram (HE) alternans can determine whether the FP or the SP reaches the His bundle on a beat-by-beat basis. We have now applied this novel index to monitor dual-pathway conduction and the effects of SP modification during AF. METHODS AND RESULTS: In 12 rabbit AVN preparations, HE alternans were confirmed during a standard A(1)A(2) pacing protocol. During AF, in 9 of the 12 hearts, HE alternans indicated the presence of dual pathways. Successful SP modification guided by the HE alternans eliminated the SP, resulting in a predominantly FP conduction during AF in all hearts. This increased the average His-His interval (204+/-14 versus 276+/-51 ms, P<0.001). Morphological studies revealed that SP modification damaged only the posterior extension of the AVN. CONCLUSIONS: We have demonstrated for the first time in rabbits that HE alternans permit "visualization" of dual-pathway electrophysiology and confirmed the presence of both FP and SP wavefronts during AF. This novel index has been used in a selective SP ablation that resulted in a significant slowing of the ventricular rate. HE alternans provide a new insight into the mechanisms of AVN conduction and could guide AVN modification for ventricular rate control in AF clinically.


Asunto(s)
Fibrilación Atrial/fisiopatología , Nodo Atrioventricular/fisiopatología , Fascículo Atrioventricular/fisiopatología , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/patología , Nodo Atrioventricular/patología , Frío , Electrofisiología , Cinética , Modelos Cardiovasculares , Conejos
14.
Am J Physiol Heart Circ Physiol ; 283(6): H2706-13, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12388219

RESUMEN

Atrial fibrillation (AF) is characterized by short and irregular ventricular cycle lengths (VCL). While the beneficial effects of heart rate slowing (i.e., the prolongation of VCL) in AF are well recognized, little is known about the impact of irregularity. In 10 anesthetized dogs, R-R intervals, left ventricular (LV) pressure, and aortic flow were collected for >500 beats during fast AF and when the average VCL was prolonged to 75%, 100%, and 125% of the intrinsic sinus cycle length by selective atrioventricular (AV) nodal vagal stimulation. We used the ratio of the preceding and prepreceding R-R intervals (RR(p)/RR(pp)) as an index of cycle length irregularity and assessed its effects on the maximum LV power, the minimum of the first derivative of LV pressure, and the time constant of relaxation by using nonlinear fitting with monoexponential functions. During prolongation of VCL, there was a pronounced decrease in curvature with the formation of a plateau, indicating a lesser dependence on RR(p)/RR(pp). We conclude that prolongation of the VCL during AF reduces the sensitivity of the LV performance parameters to irregularity.


Asunto(s)
Fibrilación Atrial/fisiopatología , Frecuencia Cardíaca , Ventrículos Cardíacos/fisiopatología , Función Ventricular , Animales , Estimulación Cardíaca Artificial , Perros , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Hemodinámica/fisiología , Modelos Lineales , Dinámicas no Lineales , Nervio Vago/fisiología , Función Ventricular Izquierda/fisiología
15.
Circulation ; 106(14): 1853-8, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12356641

RESUMEN

BACKGROUND: Selective atrioventricular nodal (AVN) vagal stimulation (AVN-VS) has emerged as a novel strategy for ventricular rate (VR) control in atrial fibrillation (AF). Although AVN-VS preserves the physiological ventricular activation sequence, the resulting rate is slow but irregular. In contrast, AVN ablation with pacemaker implantation produces retrograde activation (starting at the apex), with regular ventricular rhythm. We tested the hypothesis that, at comparable levels of VR slowing, AVN-VS provides hemodynamic benefits similar to those of ablation with pacemaker implantation. METHODS AND RESULTS: AVN-VS was delivered to the epicardial fat pad that projects parasympathetic nerve fibers to the AVN in 12 dogs during AF. A computer-controlled algorithm adjusted AVN-VS beat by beat to achieve a mean ventricular RR interval of 75%, 100%, 125%, or 150% of spontaneous sinus cycle length. The AVN was then ablated, and the right ventricular (RV) apex was paced either irregularly (i-RVP) using the RR intervals collected during AVN-VS or regularly (r-RVP) at the corresponding mean RR. The results indicated that all 3 strategies improved hemodynamics compared with AF. However, AVN-VS resulted in significantly better responses than either r-RVP or i-RVP. i-RVP resulted in worse hemodynamic responses than r-RVP. The differences among these modes became less significant when mean VR was slowed to 150% of sinus cycle length. CONCLUSIONS: AVN-VS can produce graded slowing of the VR during AF without destroying the AVN. It was hemodynamically superior to AVN ablation with either r-RVP or i-RVP, indicating that the benefits of preserving the physiological antegrade ventricular activation sequence outweigh the detrimental effect of irregularity.


Asunto(s)
Fibrilación Atrial/fisiopatología , Nodo Atrioventricular/fisiopatología , Estimulación Cardíaca Artificial , Frecuencia Cardíaca , Ventrículos Cardíacos/fisiopatología , Nervio Vago/fisiopatología , Animales , Fibrilación Atrial/terapia , Nodo Atrioventricular/cirugía , Ablación por Catéter , Modelos Animales de Enfermedad , Perros , Ecocardiografía , Estimulación Eléctrica , Técnicas Electrofisiológicas Cardíacas/métodos , Corazón/inervación , Corazón/fisiopatología , Frecuencia Cardíaca/fisiología , Hemodinámica , Resultado del Tratamiento
16.
Am J Physiol Heart Circ Physiol ; 282(6): H2141-51, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12003822

RESUMEN

Little is known about the mechanisms of vulnerability and defibrillation under ischemic conditions. We investigated these mechanisms in 18 Langendorff-perfused rabbit hearts during 75% reduced-flow ischemia. Electrical activity was optically mapped from the anterior epicardium during right ventricular shocks applied at various phases of the cardiac cycle while the excitation-contraction decoupler 2,3-butanedione monoxime (BDM; 15 mM) was used to suppress motion artifacts caused by contraction of the heart. During ischemia, vulnerable window width increased [from 30-90% of the action potential duration (APD) in the control to -10 to 100% of the APD in ischemia]. Moreover, arrhythmia severity increased along with the reduction of APD (176 +/- 9 ms in control and 129 +/- 26 ms in ischemia, P < 0.01) and increased dispersion of repolarization (45 +/- 17 ms in control and 73 +/- 28 ms in ischemia, P < 0.01). Shock-induced virtual electrode polarization was preserved. Depolarizing (contrary to hyperpolarizing) response time constants increased. Virtual electrode-induced wavefronts of excitation had much more tortuous pathways leading to wavefront fractionation. Defibrillation failure at all shock strengths was observed in four hearts. Optical mapping revealed that the shock extinguished the arrhythmia; however, the arrhythmia self-originated after an isoelectric window of 339 +/- 189 ms. In conclusion, in most cases, virtual electrode-induced phase singularity (VEIPS) was responsible for shock-induced arrhythmogenesis during acute global ischemia. Enhancement of arrhythmogenesis was associated with an increased dispersion of repolarization and altered deexcitation. In four hearts, arrhythmogenesis could not be explained by VEIPS.


Asunto(s)
Arritmias Cardíacas/etiología , Electrochoque , Isquemia Miocárdica/complicaciones , Potenciales de Acción , Animales , Cardioversión Eléctrica , Electrocardiografía , Electrodos , Electrofisiología , Cinética , Potenciales de la Membrana , Isquemia Miocárdica/fisiopatología , Conejos
17.
Am J Physiol Heart Circ Physiol ; 282(3): H1102-10, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11834509

RESUMEN

Although the beneficial effects of ventricular rate (VR) slowing during atrial fibrillation (AF) are axiomatic, the precise relationship between VR and hemodynamics has not been determined. We hypothesized that selective atrioventricular node (AVN) vagal stimulation (AVN-VS) by varying the nerve stimulation intensity could achieve precise graded slowing and permit evaluation of an optimal VR during AF. The aims of the present study were the following: 1) to develop a method for computerized vagally controlled VR slowing during AF, 2) to determine the hemodynamic changes at each level of VR slowing, and 3) to establish the optimal anterograde VR during AF. AVN-VS was delivered to the epicardial fat pad that projects parasympathetic nerve fibers to the AVN in 14 dogs. Four target average VR levels, corresponding to 75%, 100%, 125%, and 150% of the sinus cycle length (SCL), were achieved by computer feedback algorithm. VR slowing resulted in improved hemodynamics and polynomial fit analysis found an optimum for the cardiac output at VR slowing of 87% SCL. We conclude that this novel method can be used to maintain slow anterograde conduction with best hemodynamics during AF.


Asunto(s)
Fibrilación Atrial/fisiopatología , Nodo Atrioventricular/fisiopatología , Ventrículos Cardíacos/fisiopatología , Hemodinámica/fisiología , Nervio Vago/fisiopatología , Animales , Presión Sanguínea , Gasto Cardíaco , Diástole , Perros , Estimulación Eléctrica , Electrocardiografía , Retroalimentación , Frecuencia Cardíaca , Volumen Sistólico , Sístole , Función Ventricular Izquierda
18.
Exp Clin Cardiol ; 7(4): 188-92, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-19644590

RESUMEN

The optimal capacitance for defibrillation is calculated to be 40 to 80 muF by theoretical models, assuming a heart chronaxie of 2 to 4 ms and a mean impedance of 40 ohms. The 60 muF capacitor is optimal for providing maximum defibrillation efficacy, which can reduce defibrillation energy. The purpose of the present study was to determine the optimal tilt to maximize defibrillation efficacy in a 60/60 muF biphasic waveform and to compare these waveforms with an optimized 60/15 muF waveform. The defibrillation thresholds (DFTs) were evaluated for five different 60/60 muF biphasic waveforms having 40%, 50%, 60%, 70% and 80% phase 1 tilt and a 60/15 muF biphasic waveform having 50% phase 1 tilt with a hot can electrode system in 15 pigs (20+/-2 kg). Phase 2 pulse widths were held constant at 3 ms in all waveforms. The DFT was measured by 'down-up, down-up' technique and was random in each waveform. The DFT energy in 60/60 muF waveforms (40%, 50%, 60%, 70% and 80%) and a 60/15 muF waveform (50%) were 6.9*, 6.9*, 7.1*, 7.8*, 8.4* and 6.0, respectively (*P<0.05 versus 60/15 muF waveform). A phase 1 tilt of 40% to 50% maximizes defibrillation efficacy for biphasic waveforms using 60/60 muF capacitors. Additionally, switching to a 15 muF capacitor for phase 2 can further reduce the DFT energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA