Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancer Genomics Proteomics ; 21(5): 474-484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39191500

RESUMEN

BACKGROUND/AIM: Glioblastoma is the most frequent type of adult-onset malignant brain tumor and has a very poor prognosis. Glioblastoma stem cells have been shown to be one of the mechanisms by which glioblastoma acquires therapy resistance. Therefore, there is a need to establish novel therapeutic strategies useful for inhibiting this cell population. γ-Glutamylcyclotransferase (GGCT) is an enzyme involved in the synthesis and metabolism of glutathione, which is highly expressed in a wide range of cancer types, including glioblastoma, and inhibition of its expression has been reported to have antitumor effects on various cancer types. The aim of this study was to clarify the function of GGCT in glioblastoma stem cells. MATERIALS AND METHODS: We searched for pathways affected by GGCT overexpression in mouse embryonic fibroblasts NIH-3T3 by comprehensive gene expression analysis. Knockdown of GGCT and overexpression of desert hedgehog (DHH), a representative ligand of the pathway, were performed in glioblastoma stem cells derived from a mouse glioblastoma model. RESULTS: GGCT overexpression activated the hedgehog pathway. Knockdown of GGCT inhibited proliferation of glioblastoma stem cells and reduced expression of DHH and the downstream target GLI family zinc finger 1 (GLI1). DHH overexpression significantly restored the growth-suppressive effect of GGCT knockdown. CONCLUSION: High GGCT expression is important for expression of DHH and activation of the hedgehog pathway, which is required to maintain glioblastoma stem cell proliferation. Therefore, inhibition of GGCT function may be useful in suppressing stemness of glioblastoma stem cells accompanied by activation of the hedgehog pathway.


Asunto(s)
Proliferación Celular , Regulación hacia Abajo , Glioblastoma , Proteínas Hedgehog , Células Madre Neoplásicas , gamma-Glutamilciclotransferasa , Animales , Ratones , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , gamma-Glutamilciclotransferasa/metabolismo , gamma-Glutamilciclotransferasa/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Transducción de Señal
2.
Anticancer Res ; 44(2): 489-495, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38307564

RESUMEN

BACKGROUND/AIM: Individuals with Down syndrome (DS), attributed to triplication of human chromosome 21 (Hsa21), exhibit a reduced incidence of solid tumors. However, the prevalence of glioblastoma among individuals with DS remains a contentious issue in epidemiological studies. Therefore, this study examined the gliomagenicity in Ts1Cje mice, a murine model of DS. MATERIALS AND METHODS: We employed the Sleeping Beauty transposon system for the integration of human oncogenes into cells of the subventricular zone of neonatal mice. RESULTS: Notably, Sleeping Beauty-mediated de novo murine gliomagenesis was significantly suppressed in Ts1Cje mice compared to wild-type mice. In glioblastomas of Ts1je mice, we observed an augmented presence of M1-polarized tumor-associated macrophages and microglia, known for their anti-tumor efficacy in the early stage of tumor development. CONCLUSION: Our findings in a mouse model of DS offer novel perspectives on the diminished gliomagenicity observed in individuals with DS.


Asunto(s)
Síndrome de Down , Ratones , Animales , Humanos , Síndrome de Down/genética , Síndrome de Down/patología , Modelos Animales de Enfermedad
3.
J Med Chem ; 66(9): 6403-6413, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37116172

RESUMEN

Glioblastoma is a refractory malignant tumor that requires novel therapeutic strategies for effective treatment. We have previously reported that JCI-20679 (1), an analog of annonaceous acetogenins, shows potent antitumor activity against glioblastomas. However, the synthesis of 1 requires 23 steps, including 16 steps for the preparation of a tetrahydrofuran (THF) moiety. This study reports the design and synthesis of 11 analogs with a triethylene glycol moiety in place of the THF moiety in 1. Among these, the analog 2k with an n-decyl chain exhibited potent inhibitory activity against the growth of glioblastoma stem cells by inhibiting mitochondrial function and synergistically enhancing the effect of temozolomide (TMZ). Furthermore, 2k significantly suppressed tumor growth without critical toxicity in vivo. Hence, this study presents novel potential anticancer agents and a strategy for the development of these agents that can be produced easily.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Proteínas Quinasas Activadas por AMP , Línea Celular Tumoral , Tiofenos/farmacología , Tiofenos/uso terapéutico , Proliferación Celular , Glicoles de Etileno/farmacología , Glicoles de Etileno/uso terapéutico
4.
Cancer Genomics Proteomics ; 20(2): 195-202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36870690

RESUMEN

BACKGROUND/AIM: Glioblastoma is the most common and aggressive malignant brain tumor in adults, and glioblastoma stem cells (GSCs) contribute to treatment resistance and recurrence. Inhibition of Stat5b in GSCs suppresses cell proliferation and induces apoptosis. Herein, we investigated the mechanisms of growth inhibition by Stat5b knockdown (KD) in GSCs. MATERIALS AND METHODS: GSCs were established from a murine glioblastoma model in which shRNA-p53 and EGFR/Ras mutants were induced in vivo using a Sleeping Beauty transposon system. Microarray analyses were performed on Stat5b-KD GSCs to identify genes that are differentially expressed downstream of Stat5b. RT-qPCR and western blot analyses were used to determine Myb levels in GSCs. Myb-overexpressing GSCs were induced by electroporation. Proliferation and apoptosis were evaluated by a trypan blue dye exclusion test and annexin-V staining, respectively. RESULTS: MYB, which is involved in the Wnt pathway, was identified as a novel gene whose expression was down-regulated by Stat5b-KD in GSCs. Both MYB mRNA and protein levels were down-regulated by Stat5b-KD. Overexpression of Myb rescued cell proliferation that was suppressed by Stat5b-KD. Furthermore, Stat5b-KD-induced apoptosis in GSCs was significantly inhibited by Myb overexpression. CONCLUSION: Down-regulation of Myb mediates Stat5b-KD-induced inhibition of proliferation and induction of apoptosis in GSCs. This may represent a promising novel therapeutic strategy against glioblastoma.


Asunto(s)
Glioblastoma , Adulto , Humanos , Animales , Ratones , Encéfalo , Apoptosis , Proliferación Celular , Células Madre , Factor de Transcripción STAT5
5.
Mol Med Rep ; 26(1)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35621135

RESUMEN

The prognosis of glioblastoma, which is the most frequent type of adult­onset malignant brain tumor, is extremely poor. Therefore, novel therapeutic strategies are needed. Previous studies report that JCI­20679, which is synthesized based on the structure of naturally occurring acetogenin, inhibits mitochondrial complex I and suppresses the growth of various types of cancer cells. However, the efficacy of JCI­20679 on glioblastoma stem cells (GSCs) is unknown. The present study demonstrated that JCI­20679 inhibited the growth of GSCs derived from a transposon system­mediated murine glioblastoma model more efficiently compared with the growth of differentiation­induced adherent cells, as determined by a trypan blue staining dye exclusion test. The inhibition of proliferation was accompanied by the blockade of cell­cycle entry into the S­phase, as assessed by a BrdU incorporation assay. JCI­20679 decreased the mitochondrial membrane potential, suppressed the oxygen consumption rate and increased mitochondrial reactive oxygen species generation, indicating that JCI­20679 inhibited mitochondrial activity. The mitochondrial inhibition was revealed to increase phosphorylated (phospho)­AMPKα levels and decrease nuclear factor of activated T­cells 2 (NFATc2) expression, and was accompanied by a decrease in calcineurin phosphatase activity. Depletion of phospho­AMPKα by knockdown of AMPKß recovered the JCI­20679­mediated decrease in NFATc2 expression levels, as determined by western blotting and reverse transcription­quantitative PCR analysis. Overexpression of NFATc2 recovered the JCI­20679­mediated suppression of proliferation, as determined by a trypan blue staining dye exclusion test. These results suggest that JCI­20679 inhibited mitochondrial oxidative phosphorylation, which activated AMPK and reduced NFATc2 expression levels. Moreover, systemic administration of JCI­20679 extended the event­free survival rate in a mouse model transplanted with GSCs. Overall, these results suggested that JCI­20679 is a potential novel therapeutic agent against glioblastoma.


Asunto(s)
Glioblastoma , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Azul de Tripano/metabolismo , Azul de Tripano/uso terapéutico
6.
Am J Cancer Res ; 12(3): 1129-1142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35411230

RESUMEN

Glioblastoma (GBM) is the most common and malignant type of brain cancer in adults with poor prognosis. GBM stem cells (GSCs) reside within niches in GBM tissues and contribute to recurrence and therapy resistance. Previous studies have shown that expression of leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), a Wnt pathway-related stem cell marker, correlates with a poor prognosis in GBM, and its knockdown in GSCs induces apoptosis accompanied with downregulation of signal transducer and activator of transcription 5b (Stat5b). Here, we show that Stat5b co-localizes with Lgr5 in hypoxia-inducible factor 2α (Hif2α)-positive regions in GBM tissues. Functional analyses using GSCs derived from a murine de novo GBM model induced by oncogenic genes transduction using the Sleeping-Beauty transposon system revealed that expression of Stat5b was induced by culturing under hypoxia together with Lgr5, repressed by Hif2α knockdown, and reduced by Lgr5 knockdown or a Wnt/ß-catenin signaling inhibitor ICG-001 treatment. Stat5b inhibition in the GSCs induced apoptosis and caused downregulation of Cyclin E2 resulted in blockade of entry into S-phase in the cell cycle. Disruption of Stat5b in an orthotopic transplantation model significantly prolongs event-free survival. These results suggest that Stat5b, regulated by hypoxia and the Wnt pathway, plays an important role in the maintenance and tumorigenicity of GSCs and may be a promising therapeutic molecular target to attack GSCs.

7.
Biochem Biophys Res Commun ; 591: 62-67, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999255

RESUMEN

Glioblastoma, a type of brain cancer, is one of the most aggressive and lethal types of malignancy. The present study shows that JCI-20679, an originally synthesized mitochondrial complex I inhibitor, enhances the anti-proliferative effects of suboptimal concentrations of the clinically used chemotherapeutic drug temozolomide in glioblastoma cells. Analysis of the effects of temozolomide combined with JCI-20679 using isobologram and combination index methods demonstrated that the combination had synergistic effects in murine and human glioblastoma cells. We found that JCI-20679 inhibited the temozolomide-mediated induction of autophagy that facilitates cellular survival. The autophagy induced by temozolomide increased ATP production, which confers temozolomide resistance in glioblastoma cells. JCI-20679 blocked temozolomide-mediated increases in ATP levels and increased the AMP/ATP ratio. Furthermore, JCI-20679 enhanced the therapeutic effects of temozolomide in an orthotopic transplantation model of glioblastoma. These results indicate that JCI-20679 may be promising as a novel agent for enhancing the efficacy of temozolomide against glioblastoma.


Asunto(s)
Autofagia , Glioblastoma , Temozolomida , Animales , Humanos , Adenosina Trifosfato/metabolismo , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Glioblastoma/patología , Ratones SCID , Temozolomida/farmacología
8.
Cancer Gene Ther ; 29(1): 37-48, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33402732

RESUMEN

Metabolic reprogramming leading to aerobic glycolysis, termed the "Warburg effect," is a critical property of cancer cells. However, the precise mechanisms underlying this phenomenon are not fully understood. A growing body of evidence indicates that γ-glutamylcyclotransferase (GGCT), an enzyme involved in glutathione homeostasis that is highly expressed in many types of cancer, represents a promising therapeutic target. In this study, we identified GGCT as a novel regulator of hypoxia-inducible factor-1α (HIF-1α), a transcription factor that plays a role in hypoxia adaptation promoting aerobic glycolysis. In multiple human cancer cell lines, depletion of GGCT downregulated HIF-1α at the mRNA and protein levels. Conversely, in NIH3T3 mouse fibroblasts, overexpression of GGCT upregulated HIF-1α under normoxia. Moreover, depletion of GGCT downregulated HIF-1α downstream target genes involved in glycolysis, whereas overexpression of GGCT upregulated those genes. Metabolomic analysis revealed that modulation of GGCT expression induced a metabolic switch from the citric acid cycle to glycolysis under normoxia. In addition, we found that GGCT regulates expression of HIF-1α protein via the AMPK-mTORC1-4E-BP1 pathway in PC3 cells. Thus GGCT regulates the expression of HIF-1α in cancer cells, causing a switch to glycolysis.


Asunto(s)
Ciclo del Ácido Cítrico , gamma-Glutamilciclotransferasa , Animales , Línea Celular Tumoral , Glucólisis/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Células 3T3 NIH , gamma-Glutamilciclotransferasa/genética
9.
Mol Pharmacol ; 101(2): 78-86, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34862308

RESUMEN

Prohibitin-2 (PHB2) is a scaffold protein that has pleiotropic functions, which include interacting with γ-glutamylcyclotransferase (GGCT) in the cytoplasm and repressing the transcriptional activities of the p21Waf1/Cip (p21) gene in the nucleus. The cytotoxic drug fluorizoline binds to PHB1/2 and exerts antiproliferative actions on cancer cells. However, the precise mechanism underlying the antiproliferative effects of fluorizoline is not fully elucidated. In the present study, we first show that fluorizoline induces p21 expression in several human cancer cell lines, including MCF7 breast cancer cells. Treatment of MCF7 cells with fluorizoline suppressed proliferation and prevented cells from entering into the DNA synthesis phase. Knockdown of p21 rescued the suppressed proliferation, indicating that fluorizoline inhibited MCF7 cell growth via the induction of p21. Overexpression of PHB2 in MCF7 cells prevented the induction of p21 expression by fluorizoline and restored the antiproliferative effects and blockade of cell cycle progression. Moreover, treatment of MCF7 cells with fluorizoline inhibited the interaction between endogenous PHB2 and GGCT proteins and reduced the level of nuclear localization of PHB2 proteins. These results indicate that targeting PHB2 with fluorizoline induces the expression of p21 and consequently blocks proliferation of cancer cells. SIGNIFICANCE STATEMENT: This study shows that fluorizoline may be a promising novel anticancer drug candidate that induces p21 expression and blocks cell-cycle progression in human cancer cell lines. In addition, we show that fluorizoline inhibits the interaction between PHB2 and GGCT and reduces the nuclear localization of PHB2 proteins.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Regulación Neoplásica de la Expresión Génica/fisiología , Prohibitinas/metabolismo , gamma-Glutamilciclotransferasa/metabolismo , Antineoplásicos/síntesis química , Neoplasias de la Mama/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Prohibitinas/antagonistas & inhibidores , gamma-Glutamilciclotransferasa/antagonistas & inhibidores
10.
Cancer Gene Ther ; 28(12): 1339-1352, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33414520

RESUMEN

The prognosis of glioblastoma remains poor despite intensive research efforts. Glioblastoma stem cells (GSCs) contribute to tumorigenesis, invasive capacity, and therapy resistance. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), a stem cell marker, is involved in the maintenance of GSCs, although the properties of Lgr5-positive GSCs remain unclear. Here, the Sleeping-Beauty transposon-induced glioblastoma model was used in Lgr5-GFP knock-in mice identify GFP-positive cells in neurosphere cultures from mouse glioblastoma tissues. Global gene expression analysis showed that Gli2 was highly expressed in GFP-positive GSCs. Gli2 knockdown using lentiviral-mediated shRNA downregulated Hedgehog-related and Wnt signaling pathway-related genes, including Lgr5; suppressed tumor cell proliferation and invasion capacity; and induced apoptosis. Pharmacological Gli inhibition with GANT61 suppressed tumor cell proliferation. Silencing Gli2 suppressed the tumorigenicity of GSCs in an orthotopic transplantation model in vivo. These findings suggest that Gli2 affects the Hedgehog and Wnt pathways and plays an important role in GSC maintenance, suggesting Gli2 as a therapeutic target for glioblastoma treatment.


Asunto(s)
Neoplasias Encefálicas/genética , Perfilación de la Expresión Génica/métodos , Glioblastoma/genética , Proteína Gli2 con Dedos de Zinc/metabolismo , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Glioblastoma/patología , Humanos , Ratones , Pronóstico
11.
Anticancer Res ; 40(12): 6781-6789, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33288571

RESUMEN

BACKGROUND/AIM: To examine the dynamics of circulating tumour cells (CTCs) in pancreatic cancer (PC), new mouse CTC models from human PC xenografts were developed. MATERIALS AND METHODS: Orthotopic (pancreas) and heterotopic (subcutaneous) transplantation models using GFP-tagged SUIT-2 PC cells were prepared. Using a cytology-based CTC detection platform, CTCs and metastasis were compared. RESULTS: The two types of orthotopic models, including the surgical transplantation model and the intraperitoneal injection model, showed a similar pattern of initial pancreatic tumour formation and subsequent development of peritoneal and hematogenous lung metastases. In the heterotopic model, only hematogenous lung metastasis was observed, and the number of CTCs and lung metastases was higher than that of the orthotopic model. Furthermore, KRAS mutation (G12D) was detected in CTCs. CONCLUSION: These orthotopic and heterotopic models clearly differ in terms of the pattern of metastasis and CTCs and therefore, would be useful PC models to investigate the effect of drug-therapy on CTCs and the role of KRAS mutation.


Asunto(s)
Citodiagnóstico , Mutación/genética , Células Neoplásicas Circulantes/patología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA