Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Adv ; 10(7): eadk1835, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354236

RESUMEN

The TP53 tumor suppressor gene is mutated early in most of the patients with triple-negative breast cancer (TNBC). The most frequent TP53 alterations are missense mutations that contribute to tumor aggressiveness. Here, we used an autochthonous somatic TNBC mouse model, in which mutant p53 can be toggled on and off genetically while leaving the tumor microenvironment intact and wild-type for p53 to identify physiological dependencies on mutant p53. In TNBCs that develop in this model, deletion of two different hotspot p53R172H and p53R245W mutants triggers ferroptosis in vivo, a cell death mechanism involving iron-dependent lipid peroxidation. Mutant p53 protects cells from ferroptosis inducers, and ferroptosis inhibitors reverse the effects of mutant p53 loss in vivo. Single-cell transcriptomic data revealed that mutant p53 protects cells from undergoing ferroptosis through NRF2-dependent regulation of Mgst3 and Prdx6, which encode two glutathione-dependent peroxidases that detoxify lipid peroxides. Thus, mutant p53 protects TNBCs from ferroptotic death.


Asunto(s)
Adenocarcinoma , Ferroptosis , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular Tumoral , Ferroptosis/genética , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(34): e2308807120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579145

RESUMEN

The TP53 tumor suppressor gene is mutated early in the majority of patients with triple-negative breast cancer (TNBC). The most frequent TP53 alterations are missense mutations that contribute to tumor aggressiveness. We developed an autochthonous somatic K14-Cre driven TNBC mouse model with p53R172H and p53R245W mutations in which mutant p53 can be toggled on and off genetically while leaving the tumor microenvironment intact and wild-type for p53. These mice develop TNBCs with a median latency of 1 y. Deletion of mutant p53R172H or p53R245W in vivo in these tumors blunts their tumor growth and significantly extends survival of mice. Downstream analyses revealed that deletion of mutant Trp53 activated the cyclic GMP-AMP Synthase-Stimulator of Interferon Genes pathway but did not cause apoptosis implicating other mechanisms of tumor regression. Furthermore, we determined that only tumors with stable mutant p53 are dependent on mutant p53 for growth.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Genes p53 , Mutación , Mutación Missense , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Sci Adv ; 9(13): eadf0927, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36989360

RESUMEN

Cell state plasticity is carefully regulated in adult epithelia to prevent cancer. The aberrant expansion of the normally restricted capability for cell state plasticity in neoplasia is poorly defined. Using genetically engineered and carcinogen-induced mouse models of intestinal neoplasia, we observed that impaired differentiation is a conserved event preceding cancer development. Single-cell RNA sequencing (scRNA-seq) of premalignant lesions from mouse models and a patient with hereditary polyposis revealed that cancer initiates by adopting an aberrant transcriptional state characterized by regenerative activity, marked by Ly6a (Sca-1), and reactivation of fetal intestinal genes, including Tacstd2 (Trop2). Genetic inactivation of Sox9 prevented adenoma formation, obstructed the emergence of regenerative and fetal programs, and restored multilineage differentiation by scRNA-seq. Expanded chromatin accessibility at regeneration and fetal genes upon Apc inactivation was reduced by concomitant Sox9 suppression. These studies indicate that aberrant cell state plasticity mediated by unabated regenerative activity and developmental reprogramming precedes cancer development.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Ratones , Animales , Intestinos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Diferenciación Celular , Adenoma/genética , Adenoma/patología
4.
Nat Commun ; 14(1): 110, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611031

RESUMEN

Inflammation has long been recognized to contribute to cancer development, particularly across the gastrointestinal tract. Patients with inflammatory bowel disease have an increased risk for bowel cancers, and it has been posited that a field of genetic changes may underlie this risk. Here, we define the clinical features, genomic landscape, and germline alterations in 174 patients with colitis-associated cancers and sequenced 29 synchronous or isolated dysplasia. TP53 alterations, an early and highly recurrent event in colitis-associated cancers, occur in half of dysplasia, largely as convergent evolution of independent events. Wnt pathway alterations are infrequent, and our data suggest transcriptional rewiring away from Wnt. Sequencing of multiple dysplasia/cancer lesions from mouse models and patients demonstrates rare shared alterations between lesions. These findings suggest neoplastic bowel lesions developing in a background of inflammation experience lineage plasticity away from Wnt activation early during tumorigenesis and largely occur as genetically independent events.


Asunto(s)
Neoplasias Asociadas a Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Enfermedades Inflamatorias del Intestino/genética , Genómica , Hiperplasia , Inflamación/complicaciones , Inflamación/genética , Evolución Molecular
5.
Cancer Discov ; 13(3): 766-795, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36576405

RESUMEN

Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 1,086 cancer cell lines to identify selective coessentiality modules and found that a ubiquitin ligase complex composed of UBA6, BIRC6, KCMF1, and UBR4 is required for the survival of a subset of epithelial tumors that exhibit a high degree of aneuploidy. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization of the heme-regulated inhibitor, a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. SIGNIFICANCE: We describe the identification of a heretofore unrecognized ubiquitin ligase complex that prevents the aberrant activation of the ISR in a subset of cancer cells. This provides a novel insight on the regulation of ISR and exposes a therapeutic opportunity to selectively eliminate these cancer cells. See related commentary Leli and Koumenis, p. 535. This article is highlighted in the In This Issue feature, p. 517.


Asunto(s)
Carcinoma , Humanos , Ubiquitinación , Línea Celular , Transducción de Señal , Ubiquitinas
6.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36040810

RESUMEN

Collateral lethality occurs when loss of a gene/protein renders cancer cells dependent on its remaining paralog. Combining genome-scale CRISPR/Cas9 loss-of-function screens with RNA sequencing in over 900 cancer cell lines, we found that cancers of nervous system lineage, including adult and pediatric gliomas and neuroblastomas, required the nuclear kinase vaccinia-related kinase 1 (VRK1) for their survival in vivo. VRK1 dependency was inversely correlated with expression of its paralog VRK2. VRK2 knockout sensitized cells to VRK1 loss, and conversely, VRK2 overexpression increased cell fitness in the setting of VRK1 loss. DNA methylation of the VRK2 promoter was associated with low VRK2 expression in human neuroblastomas and adult and pediatric gliomas. Mechanistically, depletion of VRK1 reduced barrier-to-autointegration factor phosphorylation during mitosis, resulting in DNA damage and apoptosis. Together, these studies identify VRK1 as a synthetic lethal target in VRK2 promoter-methylated adult and pediatric gliomas and neuroblastomas.


Asunto(s)
Glioma , Neuroblastoma , Vaccinia , Niño , Glioma/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Sistema Nervioso , Neuroblastoma/genética , Proteínas Serina-Treonina Quinasas/genética , Virus Vaccinia
7.
Proc Natl Acad Sci U S A ; 117(38): 23663-23673, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900967

RESUMEN

Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion of Mdm2, a gene that encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 chromatin immunoprecipitation (ChIP) sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes, which included Mdm2 but not p21 Global p53 activation caused a metaplastic phenotype in the pancreas that was missing in mice with acinar-specific p53 activation, suggesting non-cell-autonomous effects. The p53 cellular response at single-cell resolution in the intestine altered transcriptional cell state, leading to a proximal enterocyte population enriched for genes within oxidative phosphorylation pathways. In addition, a population of active CD8+ T cells was recruited. Combined, this study provides a comprehensive profile of the p53 transcriptional response in vivo, revealing both tissue-specific transcriptomes and a unique signature, which were integrated to induce both cell-autonomous and non-cell-autonomous responses and transcriptional plasticity.


Asunto(s)
Especificidad de Órganos/genética , Análisis de la Célula Individual , Transcriptoma/genética , Proteína p53 Supresora de Tumor , Animales , Inmunoprecipitación de Cromatina , Femenino , Intestino Delgado/citología , Intestino Delgado/metabolismo , Masculino , Ratones , Ratones Transgénicos , Páncreas/citología , Páncreas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/análisis , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Sci Adv ; 6(32): eaba8415, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32821827

RESUMEN

Tumor sequencing studies have emphasized the role of epigenetics and altered chromatin homeostasis in cancer. Mutations in DAXX, which encodes a chaperone for the histone 3.3 variant, occur in 25% of pancreatic neuroendocrine tumors (PanNETs). To advance our understanding of physiological functions of Daxx, we developed a conditional Daxx allele in mice. We demonstrate that Daxx loss is well tolerated in the pancreas but creates a permissive transcriptional state that cooperates with environmental stress (inflammation) and other genetic lesions (Men1 loss) to alter gene expression and cell state, impairing pancreas recovery from inflammatory stress in vivo. The transcriptional changes are associated with dysregulation of endogenous retroviral elements (ERVs), and dysregulation of endogenous genes near ERVs is also observed in human PanNETs with DAXX mutations. Our results reveal a physiologic function of DAXX, provide a mechanism associated with impaired tissue regeneration and tumorigenesis, and expand our understanding of ERV regulation in somatic cells.


Asunto(s)
Retrovirus Endógenos , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Animales , Plasticidad de la Célula , Proteínas Co-Represoras/genética , Retrovirus Endógenos/genética , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/patología , Proteína Nuclear Ligada al Cromosoma X/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(9): 2198-2203, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440484

RESUMEN

TP53 mutations occur in ∼50% of all human tumors, with increased frequency in aggressive cancers that are notoriously difficult to treat. Additionally, p53 missense mutations are remarkably predictive of refractoriness to chemo/radiotherapy in various malignancies. These observations have led to the development of mutant p53-targeting agents that restore p53 function. An important unknown is which p53-mutant tumors will respond to p53 reactivation-based therapies. Here, we found a heterogeneous impact on therapeutic response to p53 restoration, suggesting that it will unlikely be effective as a monotherapy. Through gene expression profiling of p53R172H -mutant lymphomas, we identified retinoic acid receptor gamma (RARγ) as an actionable target and demonstrated that pharmacological activation of RARγ with a synthetic retinoid sensitizes resistant p53-mutant lymphomas to p53 restoration, while additively improving outcome and survival in inherently sensitive tumors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Experimentales/tratamiento farmacológico , Retinoides/farmacología , Tamoxifeno/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antineoplásicos Hormonales/administración & dosificación , Antineoplásicos Hormonales/farmacocinética , Antineoplásicos Hormonales/farmacología , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Ratones , Ratones Endogámicos , Mutación Missense , Retinoides/administración & dosificación , Retinoides/farmacocinética , Tamoxifeno/administración & dosificación , Tamoxifeno/farmacocinética , Transcriptoma , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/genética
10.
J Mol Cell Biol ; 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28093454

RESUMEN

Mdm2 and Mdm4 are negative regulators of the tumor suppressor p53; hence, this relationship is the focus of many cancer related studies. A multitude of experiments across various developmental stages have been conducted to explore the tissue-specific roles of these proteins in the mouse. When Mdm2 or Mdm4 are deleted in the germline or specific tissues, they display different phenotypic defects, some of which lead to embryonic lethality. Mdm2 loss is often more deleterious than loss of its homolog Mdm4 All tissues experience activation of p53 target genes upon loss of Mdm2 or Mdm4; however, the degree to which the p53 pathway is perturbed is highly tissue-specific and does not correlate to the severity of the morphological phenotypes. Therefore, a need for further understanding of how these proteins regulate p53 activity is warranted, as therapeutic targeting of the p53 pathway is rapidly evolving and gaining attention in the field of cancer research. In this review, we discuss the tissue-specificity of Mdm proteins in regulating p53 and expose the need for investigation at the cell-specific level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA