Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Int J Cardiol ; 416: 132506, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218253

RESUMEN

Early diagnosis of heart disease is crucial, as it's one of the leading causes of death globally. Machine learning algorithms can be a powerful tool in achieving this goal. Therefore, this article aims to increase the accuracy of predicting heart disease using machine learning algorithms. Five classification models are explored: eXtreme Gradient Boosting (XGBC), Random Forest Classifier (RFC), Decision Tree Classifier (DTC), K-Nearest Neighbors Classifier (KNNC), and Logistic Regression Classifier (LRC). Additionally, four optimizers are evaluated: Slime mold Optimization Algorithm, Forest Optimization Algorithm, Pathfinder algorithm, and Giant Armadillo Optimization. To ensure robust model selection, a feature selection technique utilizing k-fold cross-validation is employed. This method identifies the most relevant features from the data, potentially improving model performance. The top three performing models are then coupled with the optimization algorithms to potentially enhance their generalizability and accuracy in predicting heart failure. In the final stage, the shortlisted models (XGBC, RFC, and DTC) were assessed using performance metrics like accuracy, precision, recall, F1-score, and Matthews Correlation Coefficient (MCC). This rigorous evaluation identified the XGGA hybrid model as the top performer, demonstrating its effectiveness in predicting heart failure. XGGA achieved impressive metrics, with an accuracy, precision, recall, and F1-score of 0.972 in the training phase, underscoring its robustness. Notably, the model's predictions deviated by less than 5.5 % for patients classified as alive and by less than 1.2 % for those classified as deceased compared to the actual outcomes, reflecting minimal error and high predictive reliability. In contrast, the DTC base model was the least effective, with an accuracy of 0.840 and a precision of 0.847. Overall, the optimization using the GAO algorithm significantly enhanced the performance of the models, highlighting the benefits of this approach.

2.
Environ Pollut ; 359: 124681, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39134167

RESUMEN

Developing non radical systems for antibiotic degradation is crucial for addressing the inefficiency of conventional radical systems. In this study, novel magnetic-modified sludge biochar (MASBC) was synthesized to significantly enhance the oxidative degradation of sulfamethoxazole (SMX) by ferrate (Fe (VI)). In the Fe (VI)/MASBC system, 90.46% of SMX at a concentration of 10 µM and 49.34% of the total organic carbon (TOC) could be removed under optimal conditions of 100 µM of Fe (VI) and 0.40 g/L of MASBC within 10 min. Furthermore, the Fe (VI)/MASBC system was demonstrated with broad-spectrum removal capability towards sulfonamides in single or mixture. Quenching experiments, EPR analyses, and electrochemical experiments revealed that direct electron transfer (DET) and •O2- were mainly responsible for the removal of SMX, with functional groups (e.g., -OH, C=O) and Fe-O (redox of Fe (III)/Fe (II)) acting as the active sites, while the probe experiments showed that Fe (IV)/Fe (V) made a minor contribution to the degradation of SMX. Benefiting from the DET, the Fe (VI)/MASBC system exhibited a wide pH adaptation range (e.g., from 5.0 to 10.0) and strong anti-interference ability. The N atoms and their neighboring atoms in SMX were the prior degradation sites, with the cleavage of bond and ring opening. The degradation products showed low or non-toxicity according to ECOSAR program assessment. The removal of SMX remained within a reasonable range of 71.33%-90.46% over five consecutive cycles. Also, the Fe (VI)/MASBC system was demonstrated to be effectively applied for successful SMX removal in various water matrices, including ultrapure water, tap water, lake water, Yangtze River water, and wastewater. Therefore, this study offered new insights into the mechanism of Fe (VI) oxidation and would contribute to the efficient treatment of organic pollutants.


Asunto(s)
Carbón Orgánico , Hierro , Oxidación-Reducción , Aguas del Alcantarillado , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/química , Carbón Orgánico/química , Hierro/química , Contaminantes Químicos del Agua/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos
3.
BMC Public Health ; 24(1): 2281, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174965

RESUMEN

BACKGROUND: It is imperative to use a validated tool to measure and understand health behavior as it greatly impacts health status. It has been demonstrated that the Health Behavior Inventory - Short Form (HBI-SF) is valid in several countries. The purpose of this study was to translate the HBI-SF into Chinese and test its psychometric properties. METHODS: This study employed a two-phase methodology. The phase one entailed the cross-cultural adaptation of the HBI-SF, while the subsequent phase evaluated the psychometric properties of the scale. This evaluation encompassed classical test theory (CTT) and item response theory (IRT) tests to assess reliability and validity. It involved 1058 participants, of whom 1036 completed the questionnaire successfully. Out of these, 518 were analyzed for CTT, along with 518 for IRT. RESULTS: The S-CVI was found to be 0.935, while the I-CVI ranged from 0.889 to 1.000. The results of the confirmatory factor analysis suggested the goodness-of-fit indices for the four-factor model was acceptable. Regarding the subscales, the average variance extracted (AVE) and Heterotrait-Monotrait Ratio of Correlations (HTMT) matrix also met the cutoff values (AVE > 0.5 and HTMI < 0.85). Furthermore, the internal consistency and composite reliability indices of all factors were greater than 0.7. Infit and/or outfit values indicated that all items fitted the Rasch model. The Wright map revealed that the average person measures for the participants (mean = - 0.994, SD = 0.430) were comparatively lower than the average item measures (mean = 0.000, SD = 0.257). The person separation reliability values for the four factors ranged from 0.600 to 0.746, indicating an acceptable level of reliability. Two items showed differential item functioning. CONCLUSIONS: The findings derived from both CTT and IRT analyses demonstrate favorable levels of reliability and validity for the Chinese version of the HBI-SF.


Asunto(s)
Conductas Relacionadas con la Salud , Psicometría , Humanos , Femenino , Masculino , Adulto , China , Reproducibilidad de los Resultados , Persona de Mediana Edad , Encuestas y Cuestionarios/normas , Análisis Factorial , Adulto Joven , Traducciones , Adolescente
4.
Bioresour Technol ; 407: 131103, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002884

RESUMEN

A novel UV/oxalic acid functionalized corn straw biochar (OCBC)/peroxyacetic acid (PAA) system was built to degrade sulfadiazine from waters. 94.7 % of SDZ was removed within 30 min by UV/OCBC/PAA. The abundant surface functional groups and persistent free radicals (PFRs) on OCBC were responsible for these performances. Cyclic voltammetry (CV) and other characterization analysis revealed, under UV irradiation, the addition of OCBC served as electron donor, which might promote the reaction of electrons with PAA. The quenching and electron paramagnetic resonance (EPR) tests indicated that R-O•, 1O2 and •OH were generated. Theoretical calculations indicated sulfonamide bridge was vulnerable under the attacks of reactive species. In addition, high removal effect achieved by 5 reuse cycles and different real waters also suggested the sustainability of UV/OCBC/PAA. Overall, this study provided a feasible approach to remove SDZ with high mineralization efficiency, in addition to a potential strategy for resource utilization of corn straw.


Asunto(s)
Carbón Orgánico , Ácido Oxálico , Ácido Peracético , Sulfadiazina , Rayos Ultravioleta , Zea mays , Zea mays/química , Carbón Orgánico/química , Ácido Peracético/química , Sulfadiazina/química , Ácido Oxálico/química , Transporte de Electrón , Contaminantes Químicos del Agua , Purificación del Agua/métodos
5.
EPMA J ; 15(2): 221-232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841621

RESUMEN

Background: Suboptimal health is identified as a reversible phase occurring before chronic diseases manifest, emphasizing the significance of early detection and intervention in predictive, preventive, and personalized medicine (PPPM/3PM). While the biological and genetic factors associated with suboptimal health have received considerable attention, the influence of social determinants of health (SDH) remains relatively understudied. By comprehensively understanding the SDH influencing suboptimal health, healthcare providers can tailor interventions to address individual needs, improving health outcomes and facilitating the transition to optimal well-being. This study aimed to identify distinct profiles within SDH indicators and examine their association with suboptimal health status. Method: This cross-sectional study was conducted from June 16 to September 23, 2023, in five regions of China. Various SDH indicators, such as family health, economic status, eHealth literacy, mental disorder, social support, health behavior, and sleep quality, were examined in this study. Latent profile analysis was employed to identify distinct profiles based on these SDH indicators. Logistic regression analysis by profile was used to investigate the association between these profiles and suboptimal health status. Results: The analysis included 4918 individuals. Latent profile analysis revealed three distinct profiles (prevalence): the Adversely Burdened Vulnerability Group (37.6%), the Adversity-Driven Struggle Group (11.7%), and the Advantaged Resilience Group (50.7%). These profiles exhibited significant differences in suboptimal health status (p < 0.001). The Adversely Burdened Vulnerability Group had the highest risk of suboptimal health, followed by the Adversity-Driven Struggle Group, while the Advantaged Resilience Group had the lowest risk. Conclusions and relevance: Distinct profiles based on SDH indicators are associated with suboptimal health status. Healthcare providers should integrate SDH assessment into routine clinical practice to customize interventions and address specific needs. This study reveals that the group with the highest risk of suboptimal health stands out as the youngest among all the groups, underscoring the critical importance of early intervention and targeted prevention strategies within the framework of 3PM. Tailored interventions for the Adversely Burdened Vulnerability Group should focus on economic opportunities, healthcare access, healthy food options, and social support. Leveraging their higher eHealth literacy and resourcefulness, interventions empower the Adversity-Driven Struggle Group. By addressing healthcare utilization, substance use, and social support, targeted interventions effectively reduce suboptimal health risks and improve well-being in vulnerable populations. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00365-5.

6.
Acta Pharm Sin B ; 14(6): 2716-2731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828148

RESUMEN

Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments. Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often blocked by the blood‒tumor barrier (BTB). BTB activates its Wnt signaling to maintain barrier properties, e.g., Mfsd2a-mediated BTB low transcytosis. Here, we reported VCAM-1-targeting nano-wogonin (W@V-NPs) as an adjuvant of nano-orlistat (O@V-NPs) to intensify drug delivery and inhibit lipogenesis of brain metastases. W@V-NPs were proven to be able to inactivate BTB Wnt signaling, downregulate BTB Mfsd2a, accelerate BTB vesicular transport, and enhance tumor accumulation of O@V-NPs. With the ability to specifically kill cancer cells in a lipid-deprived environment with IC50 at 48 ng/mL, W@V-NPs plus O@V-NPs inhibited the progression of brain metastases with prolonged survival of model mice. The combination did not induce brain edema, cognitive impairment, and systemic toxicity in healthy mice. Targeting Wnt signaling could safely modulate the BTB to improve drug delivery and metabolic therapy against brain metastases.

7.
Environ Res ; 257: 119294, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823609

RESUMEN

Conventional electrochemical activation of peroxymonosulfate (PMS) is not very cost-effective and practical by the excessive input of energy. The electricity generated by photosynthetic microalgae fuel cells (MFCs) is utilized to activate PMS, which would achieve the combination of green bioelectricity and advanced oxidation processes for sustainable pollutants degradation. In this study, a novel dual-chamber of MFCs was constructed by using microalgae as anode electron donor and PMS as cathode electron acceptor, which was operating under both close-circuit and open-circuit conditions. Under close-circuit condition, 1-12 mM PMS in cathode was successfully in situ activated, where 32.00%-99.83% of SMX was removed within 24 h, which was about 1.21-1.78 times of that in the open-circuit of MFCs. Meanwhile, a significant increase in bioelectricity generation in MFCs was observed after the accumulation of microalgae biomass (4.65-5.37 mg/L), which was attributed to the efficient electron separation and transfer. Furthermore, the electrochemical analysis demonstrated that SMX or its products were functioned as electronic shuttles, facilitating the electrochemical reaction and altering the electrical capacitance. The quenching experiments and voltage output results reflected that complex active radical (SO4⋅-, ⋅OH, and 1O2) were involved in SMX removal. Seven degradation products of SMX were detected and S-N bond cleavage was the main degradation pathway. Predicted toxicity values calculated by ECOSAR program showed that all the products were less toxic or nontoxic. Finally, the density functional theory (DFT) calculations revealed that the O and N atoms on SMX were more susceptible to electrophilic reactions, which were more vulnerable to be attacked by reactive species. This study provided new insights into the activation of PMS by bioelectricity for SMX degradation, proposing the mechanisms for PMS activation and degradation sites of SMX.


Asunto(s)
Fuentes de Energía Bioeléctrica , Sulfametoxazol , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Sulfametoxazol/química , Peróxidos/química , Microalgas/efectos de los fármacos , Microalgas/química , Oxidación-Reducción
8.
J Glob Health ; 14: 04071, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574356

RESUMEN

Background: The prevalence of suboptimal health status has been increasing worldwide, posing a significant challenge to public health. Meanwhile, family health has been recognised as an important factor influencing individual health outcomes. However, the mechanisms through which family health affects suboptimal health status remain unclear. We aimed to investigate the parallel mediation role of sleep quality and health behaviour in the relationship between family health and suboptimal health status. Methods: We conducted a cross-sectional online survey with a sample of adults >18 years old from four provinces in China. The survey questionnaires queried their demographic characteristics, family health, suboptimal health status, sleep quality, and health behaviour. We assessed family health by the Family Health Scale-Short Form and suboptimal health status using the Suboptimal Health Status Questionnaire. We employed structural equation modelling to analyse the data and test the proposed mediation model. Results: we collected 4918 valid questionnaires. The mean age of the participants was 30.1 years (standard deviation = 12.5). The correlation analysis demonstrated a significant negative association between family health and suboptimal health status (r = -0.44; P < 0.001). The results of the parallel mediation analysis showed that family health had a significant indirect effect on suboptimal health status through both sleep quality (ß = -0.350; P < 0.001) and health behaviour (ß = -0.137; P < 0.001). The total indirect effect of family health on suboptimal health status through both sleep quality and health behaviour was also significant (ß = -0.569, P < 0.001). Conclusions: This study highlights the significance of family health as a predictor of suboptimal health status and suggests that sleep quality and health behaviour are parallel mediators in this relationship. By understanding the role of family health, sleep quality, and health behaviour, interventions can be targeted to improve overall health outcomes.


Asunto(s)
Salud de la Familia , Calidad del Sueño , Adulto , Humanos , Adolescente , Estudios Transversales , Estado de Salud , China/epidemiología , Conductas Relacionadas con la Salud
9.
Acta Pharmacol Sin ; 45(8): 1752-1764, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38570601

RESUMEN

Morphine and morphine-6-glucuronide (M6G) produce central nervous system (CNS) effects by activating mu-opioid receptors, while naloxone is used mainly for the reversal of opioid overdose, specifically for the fatal complication of respiratory depression, but also for alleviating opioid-induced side effects. In this study we developed a physiologically-based pharmacokinetic-pharmacodynamic (PBPK-PD) model to simultaneously predict pharmacokinetics and CNS effects (miosis, respiratory depression and analgesia) of morphine as well as antagonistic effects of naloxone against morphine. The pharmacokinetic and pharmacodynamic parameters were obtained from in vitro data, in silico, or animals. Pharmacokinetic and pharmacodynamic simulations were conducted using 39 and 36 clinical reports, respectively. The pharmacokinetics of morphine and M6G following oral or intravenous administration were simulated, and the PBPK-PD model was validated using clinical observations. The Emax model correlated CNS effects with free concentrations of morphine and M6G in brain parenchyma. The predicted CNS effects were compared with observations. Most clinical observations fell within the 5th-95th percentiles of simulations based on 1000 virtual individuals. Most of the simulated area under the concentration-time curve or peak concentrations also fell within 0.5-2-fold of observations. The contribution of morphine to CNS effects following intravenous or oral administration was larger than that of M6G. Pharmacokinetics and antagonistic effects of naloxone on CNS effects were also successfully predicted using the developed PBPK-PD model. In conclusion, the pharmacokinetics and pharmacodynamics of morphine and M6G, antagonistic effects of naloxone against morphine-induced CNS effects may be successfully predicted using the developed PBPK-PD model based on the parameters derived from in vitro, in silico, or animal studies.


Asunto(s)
Modelos Biológicos , Morfina , Naloxona , Antagonistas de Narcóticos , Naloxona/farmacocinética , Naloxona/farmacología , Humanos , Morfina/farmacocinética , Morfina/administración & dosificación , Morfina/farmacología , Antagonistas de Narcóticos/farmacocinética , Antagonistas de Narcóticos/farmacología , Antagonistas de Narcóticos/administración & dosificación , Animales , Derivados de la Morfina/farmacocinética , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/administración & dosificación , Masculino , Simulación por Computador , Administración Oral , Adulto , Administración Intravenosa , Femenino
10.
J Control Release ; 369: 458-474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575077

RESUMEN

The blood-brain barrier (BBB)/blood-tumor barrier (BTB) impedes brain entry of most brain-targeted drugs, whether they are water-soluble or hydrophobic. Endothelial WNT signaling and neoplastic pericytes maintain BTB low permeability by regulating tight junctions. Here, we proposed nitazoxanide (NTZ) and ibrutinib (IBR) co-loaded ICAM-1-targeting nanoparticles (NI@I-NPs) to disrupt the BTB in a time-dependent, reversible, and size-selective manner by targeting specific ICAM-1, inactivating WNT signaling and depleting pericytes in tumor-associated blood vessels in breast cancer brain metastases. At the optimal NTZ/IBR mass ratio (1:2), BTB opening reached the optimum effect at 48-72 h without any sign of intracranial edema and cognitive impairment. The combination of NI@I-NPs and chemotherapeutic drugs (doxorubicin and etoposide) extended the median survival of mice with breast cancer brain metastases. Targeting BTB endothelial WNT signaling and tumor pericytes via NI@I-NPs could open the BTB to improve chemotherapeutic efficiency against brain metastases.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Nanopartículas , Pericitos , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Pericitos/metabolismo , Pericitos/efectos de los fármacos , Femenino , Humanos , Nanopartículas/administración & dosificación , Piperidinas/administración & dosificación , Piperidinas/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Tiazoles/administración & dosificación , Tiazoles/farmacología , Línea Celular Tumoral , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Pirazoles/administración & dosificación , Pirazoles/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Ratones Endogámicos BALB C , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Sistemas de Liberación de Medicamentos , Adenina/análogos & derivados
11.
Stem Cell Rev Rep ; 20(1): 301-312, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37831395

RESUMEN

Aplastic anaemia (AA) is a haematopoietic disorder caused by immune-mediated attack on haematopoietic stem cells (HSCs). Stem cell transplantation and immunosuppressive therapy remain the major treatment choice for AA patients but have limited benefits and undesired side effects. The aim of our study was to clarify the protective role of immunity of chronic intermittent hypobaric hypoxia (CIHH) and the underlying mechanism in AA. Our integrative analysis demonstrated that CIHH pre-treatment significantly improved haematopoiesis and survival in an AA rat model. We further confirmed that CIHH pre-treatment was closely associated with the Th1/Th2 balance and a large number of negative regulatory haematopoietic factors, such as TNF-α and IFN-γ, produced by hyperactive Th1 lymphocytes released in AA rats, which induced the death program in a large number of CD34+ HSCs by activating the Fas/FasL apoptosis pathway, while CIHH pre-treatment effectively downregulated the expression of TNF-α and IFN-γ, resulting in a reduction in Fas antigen expression in CD34+ HSCs. In summary, this study provides evidence that CIHH has good protective effect against AA by modulating immune balance in Th1/Th2 cells and may provide a new therapeutic strategy.


Asunto(s)
Anemia Aplásica , Humanos , Ratas , Animales , Anemia Aplásica/terapia , Factor de Necrosis Tumoral alfa , Hipoxia , Células Madre Hematopoyéticas/metabolismo , Antígenos CD34
12.
J Hazard Mater ; 465: 133026, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38006858

RESUMEN

A novel approach of ball milling and oxalic acid was employed to modify sludge-based biochar (BOSBC) to boost its activation performance for peroxymonosulfate (PMS) towards efficient degradation of sulfamethoxazole (SMX). 98.6% of SMX was eliminated by PMS/BOSBC system within 60 min. Furthermore, PMS/BOSBC system was capable of maintaining high removal rates for SMX (>88.8%) in a wide pH range from 3 to 9, and displayed a high tolerance to background electrolytes including inorganic ions and humic acid (HA). Quenching experiments, electron paramagnetic resonance (EPR) analysis, in-situ Raman characterization and PMS decomposition experiments confirmed that the non-radicals of 1O2 and surface-bound radicals were the main contributors to SMX degradation by PMS/BOSBC system. The results of ecotoxicity assessment illustrated that all transformed products (TPs) generated in PMS/BOSBC system were less toxic than that of SMX. After five reuse cycles, PMS/BOSBC system still maintained a high removal rate for SMX (77.8%). Additionally, PMS/BOSBC system exhibited excellent degradation performance for SMX in various real waters (Yangtze River water (76.5%), lake water (74.1%), tap water (86.5%), and drinking water (98.1%)). Overall, this study provided novel insights on non-metal modification for sludge-based biochar and non-radical mechanism, and offered a feasible approach for municipal sludge disposal.


Asunto(s)
Carbón Orgánico , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/química , Aguas del Alcantarillado , Ácido Oxálico , Contaminantes Químicos del Agua/química , Peróxidos/química , Agua
13.
Leuk Lymphoma ; 64(14): 2306-2315, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37732614

RESUMEN

B-cell targeted therapies, including anti-CD20 monoclonal antibodies (mAb) and Bruton's tyrosine kinase inhibitors (BTKi), further suppress antibody (Ab) response to vaccines in patients with chronic lymphocytic leukemia (CLL). We conducted a prospective cohort study of SARS-CoV-2 vaccination in 81 CLL patients receiving BTKi (n = 54), venetoclax (VEN, n = 9), or who were treatment naïve (TN, n = 18). Anti-spike Ab were detected in 53% of patients on BTKi post-primary series and 84% post-booster, 57% of patients on VEN post-primary series and 50% post-booster, and 67% of TN patients post-primary series and 87% post-booster. T-cell response to the primary series was independent of Ab response. At the time of booster, 12 patients interrupted BTKi (median 21 d, range 8-22) and 33 continued BTKi. Among patients with detectable Ab post-booster, those who interrupted BTKi (n = 10) had significantly higher Ab titers (median 7149 units/mL) compared with patients who continued BTKi (n = 27, median 2071 units/mL, p = .04).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Leucemia Linfocítica Crónica de Células B , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/uso terapéutico , SARS-CoV-2 , Vacunación , Interrupción del Tratamiento
14.
Hum Mol Genet ; 32(24): 3342-3352, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712888

RESUMEN

Single nucleotide variants in the general population are common genomic alterations, where the majority are presumed to be silent polymorphisms without known clinical significance. Using human induced pluripotent stem cell (hiPSC) cerebral organoid modeling of the 1.4 megabase Neurofibromatosis type 1 (NF1) deletion syndrome, we previously discovered that the cytokine receptor-like factor-3 (CRLF3) gene, which is co-deleted with the NF1 gene, functions as a major regulator of neuronal maturation. Moreover, children with NF1 and the CRLF3L389P variant have greater autism burden, suggesting that this gene might be important for neurologic function. To explore the functional consequences of this variant, we generated CRLF3L389P-mutant hiPSC lines and Crlf3L389P-mutant genetically engineered mice. While this variant does not impair protein expression, brain structure, or mouse behavior, CRLF3L389P-mutant human cerebral organoids and mouse brains exhibit impaired neuronal maturation and dendrite formation. In addition, Crlf3L389P-mutant mouse neurons have reduced dendrite lengths and branching, without any axonal deficits. Moreover, Crlf3L389P-mutant mouse hippocampal neurons have decreased firing rates and synaptic current amplitudes relative to wild type controls. Taken together, these findings establish the CRLF3L389P variant as functionally deleterious and suggest that it may be a neurodevelopmental disease modifier.


Asunto(s)
Células Madre Pluripotentes Inducidas , Niño , Humanos , Animales , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Receptores de Citocinas/metabolismo , Nucleótidos/metabolismo
15.
Environ Sci Pollut Res Int ; 30(32): 78802-78810, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37273056

RESUMEN

Some studies have investigated the effects of PM2.5 on cardiovascular diseases based on the population-average exposure data from several monitoring stations. No one has explored the short-term effect of PM2.5 on cardiovascular hospitalizations using individual-level exposure data. We assessed the short-term effects of individual exposure to PM2.5 on hospitalizations for myocardial infarction (MI) and stroke in Guangzhou, China, during 2014-2019. The population-based data on cardio-cerebrovascular events were provided by Guangzhou Center for Disease Control and Prevention. Average annual percent changes (AAPCs) were used to describe trends in the hospitalization rates of MI and stroke. The conditional logistic regression model with a time-stratified case-crossover design was applied to estimate the effects of satellite-retrieved PM2.5 with 1-km resolution as individual-level exposure. Furthermore, we performed stratified analyses by demographic characteristics and season. There were 28,346 cases of MI, 188,611, and 36,850 cases of ischemic stroke (IS) and hemorrhagic stroke (HS), respectively, with an annual average hospitalization rate of 37.2, 247, and 48.4 per 100,000 people. Over the six-year study period, significant increasing trends in the hospitalization rates were observed with AAPCs of 12.3% (95% confidence interval [CI]: 7.24%, 17.6%), 13.1% (95% CI: 9.54%, 16.7%), and 9.57% (95% CI: 6.27%, 13.0%) for MI, IS, and HS, respectively. A 10 µg/m3 increase in PM2.5 was associated with an increase of 1.15% (95% CI: 0.308%, 1.99%) in MI hospitalization and 1.29% (95% CI: 0.882%, 1.70%) in IS hospitalization. A PM2.5-associated reduction of 1.17% (95% CI: 0.298%, 2.03%) was found for HS hospitalization. The impact of PM2.5 was greater in males than in females for MI hospitalization, and greater effects were observed in the elderly (≥ 65 years) and in cold seasons for IS hospitalization. Our study added important evidence on the adverse effect of PM2.5 based on satellite-retrieved individual-level exposure data.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infarto del Miocardio , Accidente Cerebrovascular , Masculino , Femenino , Humanos , Anciano , Estudios Cruzados , Material Particulado/análisis , Contaminación del Aire/análisis , Hospitalización , Infarto del Miocardio/epidemiología , Infarto del Miocardio/inducido químicamente , China/epidemiología , Accidente Cerebrovascular/epidemiología , Hospitales , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/análisis
16.
Small ; 19(35): e2300403, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37104822

RESUMEN

Receptor-mediated vesicular transport has been extensively developed to penetrate the blood-brain barrier (BBB) and has emerged as a class of powerful brain-targeting delivery technologies. However, commonly used BBB receptors such as transferrin receptor and low-density lipoprotein receptor-related protein 1, are also expressed in normal brain parenchymal cells and can cause drug distribution in normal brain tissues and subsequent neuroinflammation and cognitive impairment. Here, the endoplasmic reticulum residing protein GRP94 is found upregulated and relocated to the cell membrane of both BBB endothelial cells and brain metastatic breast cancer cells (BMBCCs) by preclinical and clinical investigations. Inspired by that Escherichia coli penetrates the BBB via the binding of its outer membrane proteins with GRP94, avirulent DH5α outer membrane protein-coated nanocapsules (Omp@NCs) are developed to cross the BBB, avert normal brain cells, and target BMBCCs via recognizing GRP94. Embelin (EMB)-loaded Omp@EMB specifically reduce neuroserpin in BMBCCs, which inhibits vascular cooption growth and induces apoptosis of BMBCCs by restoring plasmin. Omp@EMB plus anti-angiogenic therapy prolongs the survival of mice with brain metastases. This platform holds the translational potential to maximize therapeutic effects on GRP94-positive brain diseases.


Asunto(s)
Neoplasias Encefálicas , Nanocápsulas , Ratones , Animales , Células Endoteliales/metabolismo , Biomimética , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas de la Membrana/metabolismo , Barrera Hematoencefálica/metabolismo
17.
Helicobacter ; 28(3): e12960, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37042045

RESUMEN

BACKGROUND: Geographic differences exist in the antibiotic resistance patterns of Helicobacter pylori. Personalized treatment regimens based on local or individual resistance data are essential. We evaluated the current status of H. pylori resistance in Ningxia, analyzed resistance-related factors, and assessed the concordance of phenotypic and genotypic resistance. METHODS: Strains were isolated from the gastric mucosa of patients infected with H. pylori in Ningxia and relevant clinical information was collected. Phenotypic antibiotic susceptibility assays (Kirby-Bauer disk diffusion) and antibiotic resistance gene detection (Sanger sequencing) were performed. RESULTS: We isolated 1955 H. pylori strains. The resistance rates of H. pylori to amoxicillin, levofloxacin, clarithromycin, and metronidazole were 0.9%, 42.4%, 40.4%, and 94.2%, respectively. Only five tetracycline-resistant and one furazolidone-resistant strain were identified. Overall, 3.3% of the strains were sensitive to all six antibiotics. Multidrug-resistant strains accounted for 22.9%, of which less than 20% were from Wuzhong. Strains isolated from women and patients with nonulcerative disease had higher rates of resistance to levofloxacin and clarithromycin. Higher rates of resistance to metronidazole, levofloxacin, and clarithromycin were observed in the older age group than in the younger age group. The kappa coefficients of phenotypic resistance and genotypic resistance for levofloxacin and clarithromycin were 0.830 and 0.809, respectively, whereas the remaining antibiotics showed poor agreement. CONCLUSION: H. pylori antibiotic resistance is severe in Ningxia. Therefore, furazolidone, amoxicillin, and tetracycline are better choices for the empirical therapy of H. pylori infection in this region. Host sex, age, and the presence of ulcerative diseases may affect antibiotic resistance of the bacteria. Personalized therapy based on genetic testing for levofloxacin and clarithromycin resistance may be a future direction for the eradication therapy of H. pylori infection in Ningxia.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Femenino , Anciano , Claritromicina/farmacología , Claritromicina/uso terapéutico , Metronidazol/farmacología , Metronidazol/uso terapéutico , Levofloxacino/farmacología , Levofloxacino/uso terapéutico , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Estudios Retrospectivos , Furazolidona/uso terapéutico , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Amoxicilina/uso terapéutico , Tetraciclina/farmacología , Tetraciclina/uso terapéutico , Farmacorresistencia Microbiana , Farmacorresistencia Bacteriana
18.
Front Endocrinol (Lausanne) ; 14: 1098031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761203

RESUMEN

Purpose: The aim of this study was to investigate the value of S-Detect for predicting the malignant risk of cytologically indeterminate thyroid nodules (CITNs). Methods: The preoperative prediction of 159 CITNs (Bethesda III, IV and V) were performed using S-Detect, Thyroid Imaging Reporting and Data System of American College of Radiology (ACR TI-RADS) and Chinese TI-RADS (C-TIRADS). First, Linear-by-Linear Association test and chi-square test were used to analyze the malignant risk of CITNs. McNemar's test and receiver operating characteristic curve were used to compare the diagnostic efficacy of S-Detect and the two TI-RADS classifications for CITNs. In addition, the McNemar's test was used to compare the diagnostic accuracy of the above three methods for different pathological types of nodules. Results: The maximum diameter of the benign nodules was significantly larger than that of malignant nodules [0.88(0.57-1.42) vs 0.57(0.46-0.81), P=0.002]. The risk of malignant CITNs in Bethesda system and the two TI-RADS classifications increased with grade (all P for trend<0.001). In all the enrolled CITNs, the diagnostic results of S-Detect were significantly different from those of ACR TI-RADS and C-TIRADS, respectively (P=0.021 and P=0.007). The sensitivity and accuracy of S-Detect [95.9%(90.1%-98.5%) and 88.1%(81.7%-92.5%)] were higher than those of ACR TI-RADS [87.6%(80.1%-92.7%) and 81.8%(74.7%-87.3%)] (P=0.006 and P=0.021) and C-TIRADS [84.3%(76.3%-90.0%) and 78.6%(71.3%-84.5%)] (P=0.001 and P=0.001). Moreover, the negative predictive value and the area under curve value of S-Detect [82.8% (63.5%-93.5%) and 0.795%(0.724%-0.855%)] was higher than that of C-TIRADS [54.8%(38.8%-69.8%) and 0.724%(0.648%-0.792%] (P=0.024 and P=0.035). However, the specificity and positive predictive value of S-Detect were similar to those of ACR TI-RADS (P=1.000 and P=0.154) and C-TIRADS (P=1.000 and P=0.072). There was no significant difference in all the evaluated indicators between ACR TI-RADS and C-TIRADS (all P>0.05). The diagnostic accuracy of S-Detect (97.4%) for papillary thyroid carcinoma (PTC) was higher than that of ACR TI-RADS (90.4%) and C-TIRADS (87.8%) (P=0.021 and P=0.003). Conclusion: The diagnostic performance of S-Detect in differentiating CITNs was similar to ACR TI-RADS and superior to C-TIRADS, especially for PTC.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Humanos , Nódulo Tiroideo/patología , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/patología , Ultrasonografía/métodos , Estudios Retrospectivos
19.
EMBO J ; 42(6): e112039, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36715460

RESUMEN

Intestinal stem cells (ISCs) at the crypt base are responsible for the regeneration of the intestinal epithelium. However, how ISC self-renewal is regulated still remains unclear. Here we identified a circular RNA, circBtnl1, that is highly expressed in ISCs. Loss of circBtnl1 in mice enhanced ISC self-renewal capacity and epithelial regeneration, without changes in mRNA and protein levels of its parental gene Btnl1. Mechanistically, circBtnl1 and Atf4 mRNA competitively bound the ATP-dependent RNA helicase Ddx3y to impair the stability of Atf4 mRNA in wild-type ISCs. Furthermore, ATF4 activated Sox9 transcription by binding to its promoter via a unique motif, to enhance the self-renewal capacity and epithelial regeneration of ISCs. In contrast, circBtnl1 knockout promoted Atf4 mRNA stability and enhanced ATF4 expression, which caused Sox9 transcription to potentiate ISC stemness. These data indicate that circBtnl1-mediated Atf4 mRNA decay suppresses Sox9 transcription that negatively modulates self-renewal maintenance of ISCs.


Asunto(s)
Factor de Transcripción Activador 4 , Mucosa Intestinal , Estabilidad del ARN , ARN Circular , ARN Mensajero , Regeneración , Células Madre , Células Madre/citología , Células Madre/fisiología , Organoides/citología , Ratones Endogámicos C57BL , Animales , Ratones , ARN Circular/genética , ARN Circular/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/fisiología , Regeneración/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , ARN Mensajero/metabolismo , Activación Transcripcional , Factor de Transcripción SOX9/genética , Antígenos de Histocompatibilidad Menor/metabolismo , ARN Helicasas DEAD-box/metabolismo
20.
Potato Res ; 66(1): 231-244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35996391

RESUMEN

Virus infection is the key constraint to potato cultivation worldwide. Especially, coinfection by multiple viruses could exacerbate the yield loss. Transgenic plants expressing artificial microRNAs (amiRNAs) have been shown to confer specific resistance to viruses. In this study, three amiRNAs containing Arabidopsis miR159 as a backbone, expressing genes targeting P25, HC-Pro and Brp1 of potato virus X (PVX), potato virus Y (PVY) and potato spindle tuber viroid (PSTVd), were constructed. amiR-159P25, amiR-159HCPro and amiR-159Brp1 were cloned into the plant expression vector pCAMBIA1301 with a CaMV35S promoter, producing the p1301-pre-amiRP25-HCPro-Brp1 vector. Twenty-three transgenic plants (Solanum tuberosum cv. 'Youjin') were obtained by Agrobacterium tumefaciens-mediated transformation, and ten PCR-positive transplants were chosen for further analysis. Quantitative real-time PCR results indicated that 10 transgenic plants could express amiRNAs successfully. Southern blotting hybridization proved that amiR-159P25-HCPro-Brp1 had integrated into potato genome in transgenic lines. Viral (viroid) challenge assays revealed that these transgenic plants demonstrated resistance against PVX, PVY and PSTVd coinfection simultaneously, whereas the untransformed controls developed severe symptoms. This study demonstrates a novel amiRNA-based mechanism that may have the potential to develop multiple viral resistance strategies in potato.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA