Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Microbiol ; 14: 1196024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711698

RESUMEN

Sodium-induced potassium (K+) deficiency is more prevalent in salt-affected soils. Plants experience K+ starvation thus cytosolic K+/Na+ ratio is lowered, which is a prerequisite for their survival. K+ enrichment in crops can be acquired via K-solubilizing bacteria as a sustainable green agriculture approach. This study was conducted to explore potent K-solubilizing bacteria from the rhizosphere of wheat, rice, and native flora grown in salt-affected soils in two distinct regions of Pakistan. The aim of this work was to evaluate the contribution of microbial consortiums to the improvement of K+ assimilation and cytosolic K+/Na+ ratios in rice crops under saline-sodic conditions. Among 250 bacterial isolates, 9 were selected based on their salt (11% NaCl) and alkali (9) tolerance and K-solubilization indices (1.57-5.67). These bacterial strains were characterized for their plant growth-promoting traits and identified based on 16S rRNA gene sequencing. A consortium of five strains, namely, Enterobacter hormaechei, Citrobacter braakii, Pseudomonas putida, Erwinia iniecta, and Pantoea agglomerans, was used as a bio-inoculant to evaluate its role in K+ assimilation, cytosolic K+/Na+ ratio, and subsequent yield enhancement in rice grown under saline-sodic conditions. The impact of applied consortium on rice was assessed under variable salt levels (Control, 40, 80, and 120 mM) in a pot experiment and under natural saline-sodic conditions in the field. Plant agronomical parameters were significantly higher in the bacterial consortium-treated plants, with a concomitant increase in K+-uptake in root and shoot (0.56 and 0.35 mg g-1 dry wt.) of the salt-tolerant rice variety Shaheen. The root K+/Na+ ratio was significantly improved (200% in 40 mM and 126% in 80 mM NaCl) and in the shoot (99% in 40 mM and 131% in 80 mM) too. A similar significant increase was also observed in the salt-susceptible variety Kainat. Moreover, grain yield (30.39 g/1,000 grains wt.) and biomass (8.75 g) of the rice variety Shaheen, grown in field conditions, were also improved. It can be concluded that K-solubilizing bacteria can be used as bio-inoculants, contributing to growth and yield increment via enhanced K-assimilation and cytosolic K+/Na+ ratio in rice crops under salt stress.

2.
Front Microbiol ; 14: 1207784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455747

RESUMEN

Adaptations of green technologies to counter abiotic stress, including salinity for crops like wheat by using halotolerant microbes, is a promising approach. The current study investigated 17 salt-affected agroecological zones from the Punjab and Sindh provinces of Pakistan to explore the potential of indigenous microbial flora, with their multiple biochemical characteristics in addition to plant growth promoting (PGP) traits, for enhanced wheat production in saline areas. Initially, 297 isolated pure bacterial colonies were screened for salt tolerance, biochemical, and PGP traits. Three bacterial strains belonging to Pantoea spp. and Erwinia rhaphontici with possession of multiple characteristics were selected for the development of the halotolerant bacterial consortium. Inoculation of two local wheat varieties, Faisalabad 2008 and Galaxy 2013, with the consortium for in vitro seed germination assay and sand microcosm experiments exhibited significant improvement of selected plant growth parameters like germination percentage and root structure. Two previously reported PGP fungal strains of Trichoderma harzianum and T. viridae were also used as fungal consortium separately for pot experiments and field trials. The pot experiments exhibited a positive correlation of consortia with metabolic viz. catalase, peroxidase, and proline and agronomical parameters including shoot length, dry weight, number of spikes, spike length, and 100 grain weight. To evaluate their performance under natural environmental conditions, field trials were conducted at three salt-affected sites. Agronomical attributes including days of flowering and maturity, flag leaf weight, length and width, shoot length, number of spikes, spike length, spike weight, number of seeds spike-1, 1,000 grain weight, and plot yield indicated the efficiency of these microbes to enhance wheat growth. Concisely, the bacterial consortium showed better performance and Faisalabad 2008 was a more resistant variety as compared to Galaxy 2013. Initial promising results indicate that further extensive research on indigenous microbes might lead to the development of Pakistan's first saline-specific biofertilizers and sustainable eco-friendly agriculture practices.

3.
Front Microbiol ; 13: 1020175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419426

RESUMEN

Soil salinization and heavy metal (HM) contamination are major challenges facing agricultural systems worldwide. Determining how soil microbial communities respond to these stress factors and identifying individual phylotypes with potential to tolerate these conditions while promoting plant growth could help prevent negative impacts on crop productivity. This study used amplicon sequencing and several bioinformatic programs to characterize differences in the composition and potential functional capabilities of soil bacterial, fungal, and archaeal communities in five agricultural fields that varied in salinity and HM concentrations within the Indus basin region of Pakistan. The composition of bacteria with the potential to fix atmospheric nitrogen (N) and produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase were also determined. Microbial communities were dominated by: Euryarchaeota (archaea), Actinobacteria, Proteobacteria, Planctomycetota, Firimicutes, Patescibacteria and Acidobacteria (bacteria), and Ascomycota (fungi), and all soils contained phylotypes capable of N-fixation and ACC-deaminase production. Salinity influenced bacterial, but not archaeal or fungal communities. Both salinity and HM altered the relative abundance of many phylotypes that could potentially promote or harm plant growth. These stress factors also appeared to influence the potential functional capabilities of the microbial communities, especially in their capacity to cycle phosphorous, produce siderophores, and act as symbiotrophs or pathotrophs. Results of this study confirm that farms in this region are at risk due to salinization and excessive levels of some toxic heavy metals, which could negatively impact crop and human health. Changes in soil microbial communities and their potential functional capabilities are also likely to affect several critical agroecosystem services related to nutrient cycling, pathogen suppression, and plant stress tolerance. Many potentially beneficial phylotypes were identified that appear to be salt and HM tolerant and could possibly be exploited to promote these services within this agroecosystem. Future efforts to isolate these phylotypes and determine whether they can indeed promote plant growth and/or carry out other important soil processes are recommended. At the same time, identifying ways to promote the abundance of these unique phylotypes either through modifying soil and crop management practices, or developing and applying them as inoculants, would be helpful for improving crop productivity in this region.

4.
Front Plant Sci ; 13: 794782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677244

RESUMEN

Temperature is a significant parameter in agriculture since it controls seed germination and plant growth. Global warming has resulted in an irregular rise in temperature posing a serious threat to the agricultural production around the world. A slight increase in temperature acts as stress and exert an overall negative impact on different developmental stages including plant phenology, development, cellular activities, gene expression, anatomical features, the functional and structural orientation of leaves, twigs, roots, and shoots. These impacts ultimately decrease the biomass, affect reproductive process, decrease flowering and fruiting and significant yield losses. Plants have inherent mechanisms to cope with different stressors including heat which may vary depending upon the type of plant species, duration and degree of the heat stress. Plants initially adapt avoidance and then tolerance strategies to combat heat stress. The tolerance pathway involves ion transporter, osmoprotectants, antioxidants, heat shock protein which help the plants to survive under heat stress. To develop heat-tolerant plants using above-mentioned strategies requires a lot of time, expertise, and resources. On contrary, plant growth-promoting rhizobacteria (PGPRs) is a cost-effective, time-saving, and user-friendly approach to support and enhance agricultural production under a range of environmental conditions including stresses. PGPR produce and regulate various phytohormones, enzymes, and metabolites that help plant to maintain growth under heat stress. They form biofilm, decrease abscisic acid, stimulate root development, enhance heat shock proteins, deamination of ACC enzyme, and nutrient availability especially nitrogen and phosphorous. Despite extensive work done on plant heat stress tolerance in general, very few comprehensive reviews are available on the subject especially the role of microbes for plant heat tolerance. This article reviews the current studies on the retaliation, adaptation, and tolerance to heat stress at the cellular, organellar, and whole plant levels, explains different approaches, and sheds light on how microbes can help to induce heat stress tolerance in plants.

5.
Microbiol Res ; 260: 127015, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35447486

RESUMEN

Chickpea is an important nutritive food crop both for humans and animals. Chickpea wilt caused by Fusarium oxysporum f.sp. ciceris (Foc) results in huge yield losses every year. Chickpea being a food crop requires the development of an eco-friendly bio-pesticide to effectively control the chickpea wilt disease. In this study, more than 50 bacterial stains isolated from the rhizosphere of healthy plants growing in wilt sick soil were examined for their Foc antagonist activities. Out of these, 17 strains showing > 90% growth inhibition of Foc were then characterized for their plant growth-promoting (PGP) and biocontrol traits. The biocontrol and PGP traits identified include amylase, hydrogen cyanide, protease, cellulase, chitinase activities, p-solubilization, nitrogen-fixing, and indole-3-acetic acid production. Two bacterial strains, IR-27 and IR-57, exhibiting the highest Foc proliferation inhibition and the PGP potential along with a consortium of four different strains (Serratia sp. IN-1, Serratia sp. IS-1, Enterobacter sp. IN-2, Enterobacter sp. IN-6) were used for controlling the chickpea wilt disease and growth promotion of the chickpea plants. Confocal laser scanning microscopy revealed their root colonization ability with partial or complete elimination of broken Foc mycelia and hyphae from roots. The bacterial inoculations particularly the consortium significantly suppressed the disease and improved the overall root morphology traits (root length, root surface area, root volume, forks, tips, and crossings), resulting in enhanced growth of the chickpea plants. Significant changes in growth (107% increase in root length, 23% increase in shoot length, and 54% increase in branches) in Foc-challenged plants were observed when inoculated with the consortium. Further investigations revealed that the chickpea plants inoculated with bacterial strains induced the expression of a number of key defence enzymes, including the phenylalanine ammonia lyase, peroxidase, polyphenol peroxidase, ß-1,3 glucanase, which might have helped the plants to thwart the pathogen attack. These findings indicate the potential of our identified bacterial strains to be used as a natural biopesticide for controlling the chickpea wilt disease.


Asunto(s)
Cicer , Fusarium , Animales , Agentes de Control Biológico/metabolismo , Cicer/microbiología , Fusarium/fisiología , Peroxidasas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Suelo
6.
Microbiol Resour Announc ; 10(38): e0078721, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34553999

RESUMEN

Citrobacter braakii AN-PRR1 is a potential salt-tolerant, plant growth-promoting rice rhizobacterium isolated from Pakistani soil. The 4.9-Mb draft genome sequence contributes to its taxonomic classification and will reveal the genes putatively responsible for its osmoprotectant and plant growth-promoting activity.

7.
Front Bioeng Biotechnol ; 9: 787764, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35141214

RESUMEN

An extensive use of chemical fertilizers has posed a serious impact on food and environmental quality and sustainability. As the organic and biofertilizers can satisfactorily fulfill the crop's nutritional requirement, the plants require less chemical fertilizer application; hence, the food is low in chemical residues and environment is less polluted. The agriculture crop residues, being a rich source of nutrients, can be used to feed the soil and crops after composting and is a practicable approach to sustainable waste management and organic agriculture instead of open-field burning of crop residues. This study demonstrates a feasible strategy to convert the wheat and rice plant residues into composted organic fertilizer and subsequent enrichment with plant-beneficial bacteria. The bioactive compost was then tested in a series of in vitro and in vivo experiments for validating its role in growing organic vegetables. The compost was enriched with a blend of micronutrients, such as zinc, magnesium, and iron, and a multi-trait bacterial consortium AAP (Azospirillum, Arthrobacter, and Pseudomonas spp.). The bacterial consortium AAP showed survival up to 180 days post-inoculation while maintaining their PGP traits. Field emission scanning electron microscopic analysis and fluorescence in situ hybridization (FISH) of bioactive compost further elaborated the morphology and confirmed the PGPR survival and distribution. Plant inoculation of this bioactive compost showed significant improvement in the growth and yield of chilies and tomato without any additional chemical fertilizer yielding a high value to cost ratio. An increase of ≈35% in chlorophyll contents, ≈25% in biomass, and ≈75% in yield was observed in chilies and tomatoes. The increase in N was 18.7 and 25%, while in P contents were 18.5 and 19% in chilies and tomatoes, respectively. The application of bioactive compost significantly stimulated the bacterial population as well as the phosphatase and dehydrogenase activities of soil. These results suggest that bioactive compost can serve as a source of bioorganic fertilizer to get maximum benefits regarding vegetable yield, soil quality, and fertilizer saving with the anticipated application for other food crops. It is a possible win-win situation for environmental sustainability and food security.

8.
Front Microbiol ; 11: 2019, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117299

RESUMEN

Soil salinity has emerged as a major obstacle to meet world food demands. Halo-tolerant plant growth promoting rhizobacteria (PGPR) are potential bioinoculants to enhance crop productivity in saline agriculture. Current work was aimed at studying individual or synergetic impact of salt tolerant PGPR on wheat growth and yield under saline conditions. A pot experiment was conducted on two wheat genotypes (Aas-11; salt tolerant and Galaxy-13; salt sensitive) inoculated with Pseudomonas fluorescence, Bacillus pumilus, and Exiguobacterium aurantiacum alone and in consortium. The salt tolerant variety (Aas-11) exhibited maximum root fresh (665.2%) and dry biomass (865%), free proline (138.12%) and total soluble proteins (155.9%) contents, CAT (41.7%) activity and shoot potassium uptake (81.08%) upon inoculation with B. pumilus, while improved shoot dry weight (70.39%), water (23.49%) and osmotic (29.65%) potential, POD (60.51%) activity, enhanced root potassium (286.36%) and shoot calcium (400%) were manifested by E. aurantiacum. Highest shoot length (14.38%), fresh weight (72.73%), potassium (29.7%) and calcium (400%) acquisition as well as glycinebetaine (270.31%) content were found in plants treated with PGPR consortium. On the other hand, in the salt sensitive variety (Galaxy-13), P. fluorescens treated plants showed significantly improved leaf-water relations, glycinebetaine (10.78%) content, shoot potassium (23.07%), root calcium (50%) uptake, and yield parameters, respectively. Plant root length (71.72%) and potassium content (113.39%), root and shoot fresh and dry biomass, turgor potential (231.02%) and free proline (317.2%) content were maximum upon PGPR inoculation in consortium. Overall, Aas-11 (salt tolerant variety) showed significantly better performance than Galaxy-13 (salt sensitive variety). This study recommends B. pumilus and E. aurantiacum for the salt tolerant (Aas-11) and P. fluorescens for the salt sensitive (Galaxy-13) varieties, as potential bioinoculants to augment their growth and yield through modulation of morpho-physiological and biochemical attributes under saline conditions.

9.
Microbiol Res ; 231: 126356, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31722286

RESUMEN

In Rhizobium-legume symbiosis, the nodule is the most frequently studied compartment, where the endophytic/symbiotic microbiota demands critical investigation for development of specific inocula. We identified the bacterial diversity within root nodules of mung bean from different growing areas of Pakistan using Illumina sequencing of 16S rRNA gene. We observed specific OTUs related to specific site where Bradyrhizobium was found to be the dominant genus comprising of 82-94% of total rhizobia in nodules with very minor fraction of sequences from other rhizobia at three sites. In contrast, Ensifer (Sinorhizobium) was single dominant genus comprising 99.9% of total rhizobial sequences at site four. Among non-rhizobial sequences, the genus Acinetobacter was abundant (7-18% of total sequences), particularly in Bradyrhizobium-dominated nodule samples. Rhizobia and non-rhizobial PGPR isolated from nodule samples include Ensifer, Bradyrhizobium, Acinetobacter, Microbacterium and Pseudomonas strains. Co-inoculation of multi-trait PGPR Acinetobacter sp. VrB1 with either of the two rhizobia in field exhibited more positive effect on nodulation and plant growth than single-strain inoculation which favors the use of Acinetobacter as an essential component for development of mung bean inoculum. Furthermore, site-specific dominance of rhizobia and non-rhizobia revealed in this study may contribute towards decision making for development and application of specific inocula in different habitats.


Asunto(s)
Rhizobiaceae , Nódulos de las Raíces de las Plantas/microbiología , Vigna/microbiología , Acinetobacter/genética , Acinetobacter/aislamiento & purificación , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , ADN Bacteriano/genética , Ecosistema , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Microbiota/genética , Pakistán , Filogenia , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S , Rhizobiaceae/clasificación , Rhizobiaceae/genética , Sinorhizobium/genética , Sinorhizobium/aislamiento & purificación
10.
Environ Sci Pollut Res Int ; 27(2): 2340-2352, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31776909

RESUMEN

The modern agricultural practices have led to improve the contaminated soils with a variety of heavy metals that have become a major environmental concern. The use of arbuscular mycorrihizal fungi (AMF) is considered a potential tool for the sustainable agriculture especially in contaminated sites. Moreover, recently, the use of AMF has become a fascinating and multidisciplinary subject for the scientists dealing with plant protection. The present study was carried out to evaluate the interaction among arsenic (As) species, AMF, and two plant species: Pteris vittata and Astragalus sinicus, differing in their metal tolerance. Results about A. sinicus revealed that the biomass was affected as As (III and V) accumulated in the roots of A. sinicus, and in rachis and pinnae of P. vittata. The inoculation of AMF markedly increased the biomass yield of the both plants when exposed to As species. The exposure to the As species resulted variation and non-significant results about antioxidant enzymes and non-enzymes when grown in As stress with and without AMF. The inoculation of AMF under As species improved the organic acids concentrations in both plant species. Overall, the concentration of oxalate acid was more than formic and malic acids; however, AMF inoculation improved more organic acids in A. sinicus. P. vittata exhibited more activities of antioxidant enzymes and non-enzymes under As stress with and without AMF than A. sinicus, and hence had a more efficient defense mechanism.


Asunto(s)
Antioxidantes/química , Arsénico , Micorrizas , Raíces de Plantas/química , Pteris , Contaminantes del Suelo , Arsénico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA