Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Stroke ; 55(5): 1235-1244, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38511386

RESUMEN

BACKGROUND: The relationship between dynamic cerebral autoregulation (dCA) and functional outcome after acute ischemic stroke (AIS) is unclear. Previous studies are limited by small sample sizes and heterogeneity. METHODS: We performed a 1-stage individual patient data meta-analysis to investigate associations between dCA and functional outcome after AIS. Participating centers were identified through a systematic search of the literature and direct invitation. We included centers with dCA data within 1 year of AIS in adults aged over 18 years, excluding intracerebral or subarachnoid hemorrhage. Data were obtained on phase, gain, coherence, and autoregulation index derived from transfer function analysis at low-frequency and very low-frequency bands. Cerebral blood velocity, arterial pressure, end-tidal carbon dioxide, heart rate, stroke severity and sub-type, and comorbidities were collected where available. Data were grouped into 4 time points after AIS: <24 hours, 24 to 72 hours, 4 to 7 days, and >3 months. The modified Rankin Scale assessed functional outcome at 3 months. Modified Rankin Scale was analyzed as both dichotomized (0 to 2 versus 3 to 6) and ordinal (modified Rankin Scale scores, 0-6) outcomes. Univariable and multivariable analyses were conducted to identify significant relationships between dCA parameters, comorbidities, and outcomes, for each time point using generalized linear (dichotomized outcome), or cumulative link (ordinal outcome) mixed models. The participating center was modeled as a random intercept to generate odds ratios with 95% CIs. RESULTS: The sample included 384 individuals (35% women) from 7 centers, aged 66.3±13.7 years, with predominantly nonlacunar stroke (n=348, 69%). In the affected hemisphere, higher phase at very low-frequency predicted better outcome (dichotomized modified Rankin Scale) at <24 (crude odds ratios, 2.17 [95% CI, 1.47-3.19]; P<0.001) hours, 24-72 (crude odds ratios, 1.95 [95% CI, 1.21-3.13]; P=0.006) hours, and phase at low-frequency predicted outcome at 3 (crude odds ratios, 3.03 [95% CI, 1.10-8.33]; P=0.032) months. These results remained after covariate adjustment. CONCLUSIONS: Greater transfer function analysis-derived phase was associated with improved functional outcome at 3 months after AIS. dCA parameters in the early phase of AIS may help to predict functional outcome.

2.
Nature ; 626(8001): 1073-1083, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355792

RESUMEN

Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C-Reactiva , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Red Nerviosa , Proteínas del Tejido Nervioso , Neuronas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C-Reactiva/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Red Nerviosa/metabolismo , Red Nerviosa/patología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados
3.
Proc Natl Acad Sci U S A ; 121(7): e2313343121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315839

RESUMEN

Plants tightly control growth of their lateral organs, which led to the concept of apical dominance. However, outgrowth of the dormant lateral primordia is sensitive to the plant's nutritional status, resulting in an immense plasticity in plant architecture. While the impact of hormonal regulation on apical dominance is well characterized, the prime importance of sugar signaling to unleash lateral organ formation has just recently emerged. Here, we aimed to identify transcriptional regulators, which control the trade-off between growth of apical versus lateral organs. Making use of locally inducible gain-of-function as well as single and higher-order loss-of-function approaches of the sugar-responsive S1-basic-leucine-zipper (S1-bZIP) transcription factors, we disclosed their largely redundant function in establishing apical growth dominance. Consistently, comprehensive phenotypical and analytical studies of S1-bZIP mutants show a clear shift of sugar and organic nitrogen (N) allocation from apical to lateral organs, coinciding with strong lateral organ outgrowth. Tissue-specific transcriptomics reveal specific clade III SWEET sugar transporters, crucial for long-distance sugar transport to apical sinks and the glutaminase GLUTAMINE AMIDO-TRANSFERASE 1_2.1, involved in N homeostasis, as direct S1-bZIP targets, linking the architectural and metabolic mutant phenotypes to downstream gene regulation. Based on these results, we propose that S1-bZIPs control carbohydrate (C) partitioning from source leaves to apical organs and tune systemic N supply to restrict lateral organ formation by C/N depletion. Knowledge of the underlying mechanisms controlling plant C/N partitioning is of pivotal importance for breeding strategies to generate plants with desired architectural and nutritional characteristics.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Fitomejoramiento , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Plantas/metabolismo , Transducción de Señal/genética , Azúcares , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
FASEB J ; 38(2): e23431, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38265294

RESUMEN

Preeclampsia (PE) poses a considerable risk to the long-term cardiovascular health of both mothers and their offspring due to a hypoxic environment in the placenta leading to reduced fetal oxygen supply. Cholesterol is vital for fetal development by influencing placental function. Recent findings suggest an association between hypoxia, disturbed cholesterol homeostasis, and PE. This study investigates the influence of hypoxia on placental cholesterol homeostasis. Using primary human trophoblast cells and placentae from women with PE, various aspects of cholesterol homeostasis were examined under hypoxic and hypoxia/reoxygenation (H/R) conditions. Under hypoxia and H/R, intracellular total and non-esterified cholesterol levels were significantly increased. This coincided with an upregulation of HMG-CoA-reductase and HMG-CoA-synthase (key genes regulating cholesterol biosynthesis), and a decrease in acetyl-CoA-acetyltransferase-1 (ACAT1), which mediates cholesterol esterification. Hypoxia and H/R also increased the intracellular levels of reactive oxygen species and elevated the expression of hypoxia-inducible factor (HIF)-2α and sterol-regulatory-element-binding-protein (SREBP) transcription factors. Additionally, exposure of trophoblasts to hypoxia and H/R resulted in enhanced cholesterol efflux to maternal and fetal serum. This was accompanied by an increased expression of proteins involved in cholesterol transport such as the scavenger receptor class B type I (SR-BI) and the ATP-binding cassette transporter G1 (ABCG1). Despite these metabolic alterations, mitogen-activated-protein-kinase (MAPK) signaling, a key regulator of cholesterol homeostasis, was largely unaffected. Our findings indicate dysregulation of cholesterol homeostasis at multiple metabolic points in both the trophoblast hypoxia model and placentae from women with PE. The increased cholesterol efflux and intracellular accumulation of non-esterified cholesterol may have critical implications for both the mother and the fetus during pregnancy, potentially contributing to an elevated cardiovascular risk later in life.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Humanos , Femenino , Transporte Biológico , Hipoxia , Homeostasis
7.
Scand J Trauma Resusc Emerg Med ; 31(1): 106, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129894

RESUMEN

BACKGROUND: Out-of-hospital cardiac arrest (OHCA) in children is rare and can potentially result in severe neurological impairment. Our study aimed to identify characteristics of and factors associated with favourable neurological outcome following the resuscitation of children by the Swiss helicopter emergency medical service. MATERIALS AND METHODS: This retrospective observational study screened the Swiss Air-Ambulance electronic database from 01-01-2011 to 31-12-2021. We included all primary missions for patients ≤ 16 years with OHCA. The primary outcome was favourable neurological outcome after 30 days (cerebral performance categories (CPC) 1 and 2). Multivariable linear regression identified potential factors associated with favourable outcome (odd ratio - OR). RESULTS: Having screened 110,331 missions, we identified 296 children with OHCA, which we included in the analysis. Patients were 5.0 [1.0; 12.0] years old and 61.5% (n = 182) male. More than two-thirds had a non-traumatic OHCA (67.2%, n = 199), while 32.8% (n = 97) had a traumatic OHCA. Thirty days after the event, 24.0% (n = 71) of patients were alive, 18.9% (n = 56) with a favourable neurological outcome (CPC 1 n = 46, CPC 2 n = 10). Bystander cardiopulmonary resuscitation (OR 10.34; 95%CI 2.29-51.42; p = 0.002) and non-traumatic aetiology (OR 11.07 2.38-51.42; p = 0.002) were the factors most strongly associated with favourable outcome. Factors associated with an unfavourable neurological outcome were initial asystole (OR 0.12; 95%CI 0.04-0.39; p < 0.001), administration of adrenaline (OR 0.14; 95%CI 0.05-0.39; p < 0.001) and ongoing chest compression at HEMS arrival (OR 0.17; 95%CI 0.04-0.65; p = 0.010). CONCLUSION: In this study, 18.9% of paediatric OHCA patients survived with a favourable neurologic outcome 30 days after treatment by the Swiss helicopter emergency medical service. Immediate bystander cardiopulmonary resuscitation and non-traumatic OHCA aetiology were the factors most strongly associated with a favourable neurological outcome. These results underline the importance of effective bystander and first-responder rescue as the foundation for subsequent professional treatment of children in cardiac arrest.


Asunto(s)
Reanimación Cardiopulmonar , Servicios Médicos de Urgencia , Socorristas , Paro Cardíaco Extrahospitalario , Niño , Humanos , Masculino , Reanimación Cardiopulmonar/métodos , Paro Cardíaco Extrahospitalario/etiología , Paro Cardíaco Extrahospitalario/terapia , Sistema de Registros , Estudios Retrospectivos , Femenino , Lactante , Preescolar
8.
iScience ; 26(11): 108146, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867935

RESUMEN

Despite the similar clinical outcomes after renin-angiotensin system (RAS) inhibitor (RASi) continuation or withdrawal in COVID-19, the effects on angiotensin-converting enzyme 2 (ACE2) and RAS metabolites remain unclear. In a substudy of the randomized controlled Austrian Corona Virus Adaptive Clinical Trial (ACOVACT), patients with hypertension and COVID-19 were randomized 1:1 to either RASi continuation (n = 30) or switch to a non-RASi medication (n = 29). RAS metabolites were analyzed using a mixed linear regression model (n = 30). Time to a sustained clinical improvement was equal and ACE2 did not differ between the groups but increased over time in both. Overall ACE2 was higher with severe COVID-19. ACE-S and Ang II levels increased as expected with ACE inhibitor discontinuation. These data support the safety of RASi continuation in COVID-19, although RASi were frequently discontinued in our post hoc analysis. The study was not powered to draw definite conclusions on clinical outcomes using small sample sizes.

9.
Plant Cell Environ ; 46(11): 3392-3404, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37427798

RESUMEN

High-temperature stress limits plant growth and reproduction. Exposure to high temperature, however, also elicits a physiological response, which protects plants from the damage evoked by heat. This response involves a partial reconfiguration of the metabolome including the accumulation of the trisaccharide raffinose. In this study, we explored the intraspecific variation of warm temperature-induced raffinose accumulation as a metabolic marker for temperature responsiveness with the aim to identify genes that contribute to thermotolerance. By combining raffinose measurements in 250 Arabidopsis thaliana accessions following a mild heat treatment with genome-wide association studies, we identified five genomic regions that were associated with the observed trait variation. Subsequent functional analyses confirmed a causal relationship between TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) and warm temperature-dependent raffinose synthesis. Moreover, complementation of the tps1-1 null mutant with functionally distinct TPS1 isoforms differentially affected carbohydrate metabolism under more severe heat stress. While higher TPS1 activity was associated with reduced endogenous sucrose levels and thermotolerance, disruption of trehalose 6-phosphate signalling resulted in higher accumulation of transitory starch and sucrose and was associated with enhanced heat resistance. Taken together, our findings suggest a role of trehalose 6-phosphate in thermotolerance, most likely through its regulatory function in carbon partitioning and sucrose homoeostasis.


Asunto(s)
Arabidopsis , Termotolerancia , Temperatura , Rafinosa , Termotolerancia/genética , Trehalosa/metabolismo , Estudio de Asociación del Genoma Completo , Arabidopsis/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Sacarosa , Fosfatos
10.
J Lipid Res ; 64(10): 100417, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37481037

RESUMEN

Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analyzed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wild-type flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period01 clock mutants. In wild-type flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of the targeted lipids peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wild-type flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs, and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality.

11.
Plant J ; 115(1): 81-96, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36976526

RESUMEN

Heat stress triggers the accumulation of triacylglycerols in Arabidopsis leaves, which increases basal thermotolerance. However, how triacylglycerol synthesis is linked to thermotolerance remains unclear and the mechanisms involved remain to be elucidated. It has been shown that triacylglycerol and starch degradation are required to provide energy for stomatal opening induced by blue light at dawn. To investigate whether triacylglycerol turnover is involved in heat-induced stomatal opening during the day, we performed feeding experiments with labeled fatty acids. Heat stress strongly induced both triacylglycerol synthesis and degradation to channel fatty acids destined for peroxisomal ß-oxidation through the triacylglycerol pool. Analysis of mutants defective in triacylglycerol synthesis or peroxisomal fatty acid uptake revealed that triacylglycerol turnover and fatty acid catabolism are required for heat-induced stomatal opening in illuminated leaves. We show that triacylglycerol turnover is continuous (1.2 mol% per min) in illuminated leaves even at 22°C. The ß-oxidation of triacylglycerol-derived fatty acids generates C2 carbon units that are channeled into the tricarboxylic acid pathway in the light. In addition, carbohydrate catabolism is required to provide oxaloacetate as an acceptor for peroxisomal acetyl-CoA and maintain the tricarboxylic acid pathway for energy and amino acid production during the day.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Triglicéridos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Respuesta al Choque Térmico , Luz , Estomas de Plantas/metabolismo
12.
J Pharm Sci ; 112(1): 51-60, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279956

RESUMEN

In this work we use Raman spectroscopy for protein characterization in the frozen state. We investigate the behavior of frozen therapeutic monoclonal antibody IgG1 formulation upon thawing by Raman spectroscopy. Secondary and tertiary structure of the protein in three different mab formulations in the frozen state are followed through observation of marker bands for α-helix, ß-sheet and random coil. We identify the tyrosine intensity ratio I856/I830 as a marker for mab aggregation. Upon fast cooling (40 °C/min) to -80 °C we observe a significant increase of random coil and α -helical structures, while this is not the case for slower cooling (20 °C/min) to -80 °C. Most changes in the protein's secondary structure are observed in the course of thawing in the range up to -20 °C, when passing through the glass transitions and cold-crystallization of the two types of freeze-concentrated solutions formed through macro- and microcryoconcentration. An increase of protein concentration and the addition of mannitol suppress secondary structural changes but do no impact on aggregation.


Asunto(s)
Química Farmacéutica , Manitol , Congelación , Estructura Secundaria de Proteína , Manitol/química , Anticuerpos Monoclonales
13.
Front Insect Sci ; 3: 1146464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469509

RESUMEN

[This corrects the article DOI: 10.3389/finsc.2022.951317.].

14.
Sci Rep ; 12(1): 19837, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400896

RESUMEN

Hypertensive disorders of pregnancy (HDP) contribute substantially to perinatal morbidity and mortality. Epigenetic changes point towards cardio-metabolic dysregulation for these vascular disorders. In early pregnancy, epigenetic changes using cell free DNA (cfDNA) are largely unexplored. We aimed to investigate these in HDP between 11 and 14 weeks of gestation by analysis of cfDNA methylation profiles in patients with hypertensive disorders. We identified patients without chronic hypertension but with subsequent development of preeclampsia (PE) (n = 11), with chronic hypertension (HT) but without PE development (n = 14), and lacking both PE and HT (n = 422). We matched patients according to PE risk factors into three groups (n = 5 each group): (1) PE: no HT but PE development, (2) HT: chronic hypertension but no PE and (3) Control: no PE or HT. We successfully optimized our cfDNA isolation process prior to whole genome bisulfite sequencing. Analysis of cfDNA methylation changes indicate a common predisposition in PE and HT groups, chiefly of maternal origin. Assessment of significant differentially methylated regions and annotated genes point towards a common cardiovascular predisposition in preeclampsia and hypertension groups in the first trimester. We postulate the pivotal role of the maternal cardiovascular system in HDP, which is already evident in the first trimester.


Asunto(s)
Ácidos Nucleicos Libres de Células , Hipertensión Inducida en el Embarazo , Preeclampsia , Humanos , Embarazo , Femenino , Preeclampsia/genética , Hipertensión Inducida en el Embarazo/genética , Metilación , Primer Trimestre del Embarazo
15.
J Econ Psychol ; 93: 102572, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36267496

RESUMEN

In a scenario study with 1200 Austrian taxpayers, we examined how tax compliance is affected by the economic crisis related to the COVID-19 pandemic. Moreover, we investigated the potential of trust in government, attitude towards taxes, and justice perceptions in mitigating potential effects. The results suggest a strong effect of the economic environment on tax compliance. Specifically, tax compliance was lower in scenarios where the pandemic had a negative effect on the economy than in scenarios with no negative effect. However, for individuals with a positive attitude towards taxes, compliance was not lower in a negative economic environment than in pre-COVID-19 times. Moreover, we found that taxpayers who were not affected economically, taxpayers with a positive attitude towards taxes, and taxpayers with a low propensity to take risks generally indicated higher levels of tax compliance. Exploratory analyses indicate that taxpayers who change their compliance behavior in response to the economic environment are, on average, younger, less educated, more strongly affected economically, and more uncertain about their current economic situation than taxpayers with stable compliance levels. Policy interventions should target these groups to strengthen tax compliance in times of crisis.

16.
J Biol Chem ; 298(11): 102519, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36152752

RESUMEN

Plants and algae are faced with a conundrum: harvesting sufficient light to drive their metabolic needs while dissipating light in excess to prevent photodamage, a process known as nonphotochemical quenching. A slowly relaxing form of energy dissipation, termed qH, is critical for plants' survival under abiotic stress; however, qH location in the photosynthetic membrane is unresolved. Here, we tested whether we could isolate subcomplexes from plants in which qH was induced that would remain in an energy-dissipative state. Interestingly, we found that chlorophyll (Chl) fluorescence lifetimes were decreased by qH in isolated major trimeric antenna complexes, indicating that they serve as a site for qH-energy dissipation and providing a natively quenched complex with physiological relevance to natural conditions. Next, we monitored the changes in thylakoid pigment, protein, and lipid contents of antenna with active or inactive qH but did not detect any evident differences. Finally, we investigated whether specific subunits of the major antenna complexes were required for qH but found that qH was insensitive to trimer composition. Because we previously observed that qH can occur in the absence of specific xanthophylls, and no evident changes in pigments, proteins, or lipids were detected, we tentatively propose that the energy-dissipative state reported here may stem from Chl-Chl excitonic interaction.


Asunto(s)
Clorofila , Complejos de Proteína Captadores de Luz , Complejo de Proteína del Fotosistema II , Plantas , Clorofila/química , Luz , Complejos de Proteína Captadores de Luz/química , Fotosíntesis , Complejo de Proteína del Fotosistema II/química , Plantas/química , Tilacoides/química , Xantófilas/química
17.
Front Plant Sci ; 13: 911073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783987

RESUMEN

Sphingolipid long-chain bases (LCBs) are building blocks for membrane-localized sphingolipids, and are involved in signal transduction pathways in plants. Elevated LCB levels are associated with the induction of programmed cell death and pathogen-derived toxin-induced cell death. Therefore, levels of free LCBs can determine survival of plant cells. To elucidate the contribution of metabolic pathways regulating high LCB levels, we applied the deuterium-labeled LCB D-erythro-sphinganine-d7 (D7-d18:0), the first LCB in sphingolipid biosynthesis, to Arabidopsis leaves and quantified labeled LCBs, LCB phosphates (LCB-Ps), and 14 abundant ceramide (Cer) species over time. We show that LCB D7-d18:0 is rapidly converted into the LCBs d18:0P, t18:0, and t18:0P. Deuterium-labeled ceramides were less abundant, but increased over time, with the highest levels detected for Cer(d18:0/16:0), Cer(d18:0/24:0), Cer(t18:0/16:0), and Cer(t18:0/22:0). A more than 50-fold increase of LCB-P levels after leaf incubation in LCB D7-d18:0 indicated that degradation of LCBs via LCB-Ps is important, and we hypothesized that LCB-P degradation could be a rate-limiting step to reduce high levels of LCBs. To functionally test this hypothesis, we constructed a transgenic line with dihydrosphingosine-1-phosphate lyase 1 (DPL1) under control of an inducible promotor. Higher expression of DPL1 significantly reduced elevated LCB-P and LCB levels induced by Fumonisin B1, and rendered plants more resistant against this fungal toxin. Taken together, we provide quantitative data on the contribution of major enzymatic pathways to reduce high LCB levels, which can trigger cell death. Specifically, we provide functional evidence that DPL1 can be a rate-limiting step in regulating high LCB levels.

18.
Cells ; 11(12)2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35741027

RESUMEN

Preeclampsia (PE) is a pregnancy-specific disorder that affects 3 to 5% of pregnancies worldwide and is one of the leading causes of maternal and fetal morbidity and mortality. Nevertheless, how these events occur remains unclear. We hypothesized that the induction of hypoxic conditions in vitro in primary human trophoblast cells would mimic several characteristics of PE found in vivo. We applied and characterized a model of primary cytotrophoblasts isolated from healthy pregnancies that were placed under different oxygen concentrations: ambient O2 (5% pCO2, 21%pO2, 24 h, termed "normoxia"), low O2 concentration (5% pCO2, 1.5% pO2, 24 h, termed "hypoxia"), or "hypoxia/reoxygenation" (H/R: 6 h intervals of normoxia and hypoxia for 24 h). Various established preeclamptic markers were assessed in this cell model and compared to placental tissues obtained from PE pregnancies. Seventeen PE markers were analyzed by qPCR, and the protein secretion of soluble fms-like tyrosine kinase 1 (sFlT-1) and the placenta growth factor (PlGF) was determined by ELISA. Thirteen of seventeen genes associated with angiogenesis, the renin-angiotensin system, oxidative stress, endoplasmic reticulum stress, and the inflammasome complex were susceptible to H/R and hypoxia, mimicking the expression pattern of PE tissue. In cell culture supernatants, the secretion of sFlT-1 was increased in hypoxia, while PlGF release was significantly reduced in H/R and hypoxia. In the supernatants of our cell models, the sFlT-1/PlGF ratio in hypoxia and H/R was higher than 38, which is a strong indicator for PE in clinical practice. These results suggest that our cellular models reflect important pathological processes occurring in PE and are therefore suitable as PE in vitro models.


Asunto(s)
Preeclampsia , Biomarcadores/metabolismo , Femenino , Humanos , Hipoxia/metabolismo , Fenotipo , Placenta/metabolismo , Preeclampsia/metabolismo , Embarazo , Trofoblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
Sci Rep ; 12(1): 4016, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256767

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuronal disorder characterized by neuronal degeneration and currently no effective cure is available to stop or delay the disease from progression. Transplantation of murine glial-restricted precursors (mGRPs) is an attractive strategy to modulate ALS development and advancements such as the use of immune modulators could potentially extend graft survival and function. Using a well-established ALS transgenic mouse model (SOD1G93A), we tested mGRPs in combination with the immune modulators synthetic PreImplantation Factor (sPIF), Tacrolimus (Tac), and Costimulatory Blockade (CB). We report that transplantation of mGRPs into the cisterna magna did not result in increased mice survival. The addition of immunomodulatory regimes again did not increase mice lifespan but improved motor functions and sPIF was superior compared to other immune modulators. Immune modulators did not affect mGRPs engraftment significantly but reduced pro-inflammatory cytokine production. Finally, sPIF and CB reduced the number of microglial cells and prevented neuronal number loss. Given the safety profile and a neuroprotective potential of sPIF, we envision its clinical application in near future.


Asunto(s)
Esclerosis Amiotrófica Lateral , Trastornos Motores , Neuroglía , Péptidos , Trasplante de Células Madre , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Transgénicos , Trastornos Motores/tratamiento farmacológico , Trastornos Motores/terapia , Neuroglía/citología , Neuroglía/trasplante , Péptidos/farmacología , Células Madre/citología
20.
Sci Rep ; 12(1): 1081, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058538

RESUMEN

Sphingolipid long chain bases (LCBs) are building blocks of sphingolipids and can serve as signalling molecules, but also have antimicrobial activity and were effective in reducing growth of a range of human pathogens. In plants, LCBs are linked to cell death processes and the regulation of defence reactions against pathogens, but their role in directly influencing growth of plant-interacting microorganisms has received little attention. Therefore, we tested the major plant LCB phytosphingosine in in vitro tests with the plant pathogenic fungi Verticillium longisporum, Fusarium graminearum and Sclerotinia sclerotiorum, the plant symbiotic fungal endophyte Serendipita indica, the bacterial pathogens Pseudomonas syringae pv. tomato (Pst), Agrobacterium tumefaciens, and the related beneficial strain Rhizobium radiobacter. Phytosphingosine inhibited growth of these organisms at micromolar concentrations. Among the fungal pathogens, S. sclerotiorum was the most, and F. graminearum was the least sensitive. 15.9 µg/mL phytosphingosine effectively killed 95% of the three bacterial species. Plant disease symptoms and growth of Pst were also inhibited by phytosphingosine when co-infiltrated into Arabidopsis leaves, with no visible negative effect on host tissue. Taken together, we demonstrate that the plant LCB phytosphingosine inhibits growth of plant-interacting microorganisms. We discuss the potential of elevated LCB levels to enhance plant pathogen resistance.


Asunto(s)
Hongos/efectos de los fármacos , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Agrobacterium tumefaciens , Antifúngicos/farmacología , Arabidopsis , Hongos/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Hojas de la Planta/metabolismo , Pseudomonas syringae , Esfingosina/metabolismo , Esfingosina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA