Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Calcium ; 95: 102368, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33621899

RESUMEN

Astroglial aerobic glycolysis, a process during which d-glucose is converted to l-lactate, a brain fuel and signal, is regulated by the plasmalemmal receptors, including adrenergic receptors (ARs) and purinergic receptors (PRs), modulating intracellular Ca2+ and cAMP signals. However, the extent to which the two signals regulate astroglial aerobic glycolysis is poorly understood. By using agonists to stimulate intracellular α1-/ß-AR-mediated Ca2+/cAMP signals, ß-AR-mediated cAMP and P2R-mediated Ca2+ signals and genetically encoded fluorescence resonance energy transfer-based glucose and lactate nanosensors in combination with real-time microscopy, we show that intracellular Ca2+, but not cAMP, initiates a robust increase in the concentration of intracellular free d-glucose ([glc]i) and l-lactate ([lac]i), both depending on extracellular d-glucose, suggesting Ca2+-triggered glucose uptake and aerobic glycolysis in astrocytes. When the glycogen shunt, a process of glycogen remodelling, was inhibited, the α1-/ß-AR-mediated increases in [glc]i and [lac]i were reduced by ∼65 % and ∼30 %, respectively, indicating that at least ∼30 % of the utilization of d-glucose is linked to glycogen remodelling and aerobic glycolysis. Additional activation of ß-AR/cAMP signals aided to α1-/ß-AR-triggered [lac]i increase, whereas the [glc]i increase was unaltered. Taken together, an increase in intracellular Ca2+ is the prime mechanism of augmented aerobic glycolysis in astrocytes, while cAMP has only a moderate role. The results provide novel information on the signals regulating brain metabolism and open new avenues to explore whether astroglial Ca2+ signals are dysregulated and contribute to neuropathologies with impaired brain metabolism.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Glucosa/metabolismo , Glucólisis/fisiología , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Femenino , Glucólisis/efectos de los fármacos , Isoproterenol/farmacología , Fenilefrina/farmacología , Ratas , Ratas Wistar
2.
Metabolism ; 116: 154463, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33309713

RESUMEN

OBJECTIVES: GDI1 gene encodes for αGDI, a protein controlling the cycling of small GTPases, reputed to orchestrate vesicle trafficking. Mutations in human GDI1 are responsible for intellectual disability (ID). In mice with ablated Gdi1, a model of ID, impaired working and associative short-term memory was recorded. This cognitive phenotype worsens if the deletion of αGDI expression is restricted to neurons. However, whether astrocytes, key homeostasis providing neuroglial cells, supporting neurons via aerobic glycolysis, contribute to this cognitive impairment is unclear. METHODS: We carried out proteomic analysis and monitored [18F]-fluoro-2-deoxy-d-glucose uptake into brain slices of Gdi1 knockout and wild type control mice. d-Glucose utilization at single astrocyte level was measured by the Förster Resonance Energy Transfer (FRET)-based measurements of cytosolic cyclic AMP, d-glucose and L-lactate, evoked by agonists selective for noradrenaline and L-lactate receptors. To test the role of astrocyte-resident processes in disease phenotype, we generated an inducible Gdi1 knockout mouse carrying the Gdi1 deletion only in adult astrocytes and conducted behavioural tests. RESULTS: Proteomic analysis revealed significant changes in astrocyte-resident glycolytic enzymes. Imaging [18F]-fluoro-2-deoxy-d-glucose revealed an increased d-glucose uptake in Gdi1 knockout tissue versus wild type control mice, consistent with the facilitated d-glucose uptake determined by FRET measurements. In mice with Gdi1 deletion restricted to astrocytes, a selective and significant impairment in working memory was recorded, which was rescued by inhibiting glycolysis by 2-deoxy-d-glucose injection. CONCLUSIONS: These results reveal a new astrocyte-based mechanism in neurodevelopmental disorders and open a novel therapeutic opportunity of targeting aerobic glycolysis, advocating a change in clinical practice.


Asunto(s)
Desoxiglucosa/farmacología , Glucólisis/efectos de los fármacos , Inhibidores de Disociación de Guanina Nucleótido/genética , Discapacidad Intelectual/genética , Trastornos de la Memoria/prevención & control , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Desoxiglucosa/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Glucosa/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/deficiencia , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/genética , Ratones , Ratones Noqueados
3.
Front Mol Neurosci ; 11: 148, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867342

RESUMEN

Besides being a neuronal fuel, L-lactate is also a signal in the brain. Whether extracellular L-lactate affects brain metabolism, in particular astrocytes, abundant neuroglial cells, which produce L-lactate in aerobic glycolysis, is unclear. Recent studies suggested that astrocytes express low levels of the L-lactate GPR81 receptor (EC50 ≈ 5 mM) that is in fat cells part of an autocrine loop, in which the Gi-protein mediates reduction of cytosolic cyclic adenosine monophosphate (cAMP). To study whether a similar signaling loop is present in astrocytes, affecting aerobic glycolysis, we measured the cytosolic levels of cAMP, D-glucose and L-lactate in single astrocytes using fluorescence resonance energy transfer (FRET)-based nanosensors. In contrast to the situation in fat cells, stimulation by extracellular L-lactate and the selective GPR81 agonists, 3-chloro-5-hydroxybenzoic acid (3Cl-5OH-BA) or 4-methyl-N-(5-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-4-(2-thienyl)-1,3-thiazol-2-yl)cyclohexanecarboxamide (Compound 2), like adrenergic stimulation, elevated intracellular cAMP and L-lactate in astrocytes, which was reduced by the inhibition of adenylate cyclase. Surprisingly, 3Cl-5OH-BA and Compound 2 increased cytosolic cAMP also in GPR81-knock out astrocytes, indicating that the effect is GPR81-independent and mediated by a novel, yet unidentified, excitatory L-lactate receptor-like mechanism in astrocytes that enhances aerobic glycolysis and L-lactate production via a positive feedback mechanism.

4.
J Biol Chem ; 290(17): 11167-76, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25792745

RESUMEN

Astrocytes contain glycogen, an energy buffer, which can bridge local short term energy requirements in the brain. Glycogen levels reflect a dynamic equilibrium between glycogen synthesis and glycogenolysis. Many factors that include hormones and neuropeptides, such as insulin and insulin-like growth factor 1 (IGF-1) likely modulate glycogen stores in astrocytes, but detailed mechanisms at the cellular level are sparse. We used a glucose nanosensor based on Förster resonance energy transfer to monitor cytosolic glucose concentration with high temporal resolution and a cytochemical approach to determine glycogen stores in single cells. The results show that after glucose depletion, glycogen stores are replenished. Insulin and IGF-1 boost the process of glycogen formation. Although astrocytes appear to express glucose transporter GLUT4, glucose entry across the astrocyte plasma membrane is not affected by insulin. Stimulation of cells with insulin and IGF-1 decreased cytosolic glucose concentration, likely because of elevated glucose utilization for glycogen synthesis.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Hipoglucemiantes/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Insulina/farmacología , Animales , Astrocitos/citología , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/metabolismo , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA