Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Bone ; : 117272, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39369833

RESUMEN

Adiponectin regulates lipid and glucose metabolism, and insulin sensitivity in various target organs; however, the effects of adiponectin on bone health remain controversial. Exercise training can enhance bone density, bone microarchitecture, and blood flow. This study aimed to elucidate the role of adiponectin in adaptations of bone microarchitecture and bone vasculature in response to aerobic exercise training. Adult male C57BL/6 wild-type (WT) and homozygous adiponectin knockout (AdipoKO) mice were either treadmill exercise trained or remained sedentary for 8-10 weeks. The trabecular structures of the distal femoral metaphysis, a weight-bearing bone, and the mandible, a non-weight-bearing bone, were examined using microcomputed tomography. The femoral principal nutrient arteries were isolated to assess vasoreactivity (vasodilation and vasoconstriction) and structural remodeling. At the femoral metaphysis, impaired trabecular bone structures, including reduced connectivity density and increased trabecular spacing, were observed in AdipoKO mice compared to WT mice. In addition, nitric oxide-mediated, endothelium-dependent vasodilation was substantially reduced, and wall-to-lumen ratio was significantly increased in the femoral principal nutrient artery of AdipoKO mice. Interestingly, although exercise training-induced enhancements in trabecular connectivity density were observed at the femoral metaphysis of both WT and AdipoKO, increased vasoconstrictor responses were only observed in the femoral principal nutrient artery of WT mice, not in the AdipoKO mice. In mandibular trabecular bone, exercise training increased trabecular bone volume fraction (BV/TV, %) and intersection surface in the mandible of both WT and AdipoKO mice. These findings indicate that adiponectin is crucial for maintaining normal bone microarchitecture and vasculature. Although the absence of adiponectin compromises bone vascular adaptation to exercise training in mice, some exercise training-induced alterations in bone microarchitecture occurred in the absence of adiponectin, suggesting contribution of compensatory mechanisms during exercise training.

2.
J Physiol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861348

RESUMEN

Older adults are vulnerable to glucocorticoid-induced muscle atrophy and weakness, with sex potentially influencing their susceptibility to those effects. Aerobic exercise can reduce glucocorticoid-induced muscle atrophy in young rodents. However, it is unknown whether aerobic exercise can prevent glucocorticoid myopathy in aged muscle. The objectives of this study were to define the extent to which sex influences the development of glucocorticoid myopathy in aged muscle, and to determine the extent to which aerobic exercise training protects against myopathy development. Twenty-four-month-old female (n = 30) and male (n = 33) mice were randomized to either sedentary or aerobic exercise groups. Within their respective groups, mice were randomized to either daily treatment with dexamethasone (DEX) or saline. Upon completing treatments, the contractile properties of the triceps surae complex were assessed in situ. DEX marginally lowered muscle mass and soluble protein content in both sexes, which was attenuated by aerobic exercise only in females. DEX increased sub-tetanic force and rate of force development only in females, which was not influenced by aerobic exercise. Muscle fatigue was higher in both sexes following DEX, but aerobic exercise prevented fatigue induction only in females. The sex-specific differences to muscle function in response to DEX treatment coincided with sex-specific changes to the content of proteins related to calcium handling, mitochondrial quality control, reactive oxygen species production, and glucocorticoid receptor in muscle. These findings define several important sexually dimorphic changes to aged skeletal muscle physiology in response to glucocorticoid treatment and define the capacity of short-term aerobic exercise to protect against those changes. KEY POINTS: There are sexually dimorphic effects of glucocorticoids on aged skeletal muscle physiology. Glucocorticoid-induced changes to aged muscle contractile properties coincide with sex-specific differences in the content of calcium handling proteins. Aerobic exercise prevents glucocorticoid-induced fatigue only in aged females and coincides with differences in the content of mitochondrial quality control proteins and glucocorticoid receptors.

3.
Microvasc Res ; 154: 104686, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38614154

RESUMEN

Pulmonary hypertension (PH) is a chronic, progressive condition in which respiratory muscle dysfunction is a primary contributor to exercise intolerance and dyspnea in patients. Contractile function, blood flow distribution, and the hyperemic response are altered in the diaphragm with PH, and we sought to determine whether this may be attributed, in part, to impaired vasoreactivity of the resistance vasculature. We hypothesized that there would be blunted endothelium-dependent vasodilation and impaired myogenic responsiveness in arterioles from the diaphragm of PH rats. Female Sprague-Dawley rats were randomized into healthy control (HC, n = 9) and monocrotaline-induced PH rats (MCT, n = 9). Endothelium-dependent and -independent vasodilation and myogenic responses were assessed in first-order arterioles (1As) from the medial costal diaphragm in vitro. There was a significant reduction in endothelium-dependent (via acetylcholine; HC, 78 ± 15% vs. MCT, 47 ± 17%; P < 0.05) and -independent (via sodium nitroprusside; HC, 89 ± 10% vs. MCT, 66 ± 10%; P < 0.05) vasodilation in 1As from MCT rats. MCT-induced PH also diminished myogenic constriction (P < 0.05) but did not alter passive pressure responses. The diaphragmatic weakness, impaired hyperemia, and blood flow redistribution associated with PH may be due, in part, to diaphragm vascular dysfunction and thus compromised oxygen delivery which occurs through both endothelium-dependent and -independent mechanisms.


Asunto(s)
Diafragma , Hipertensión Pulmonar , Ratas Sprague-Dawley , Vasodilatación , Animales , Femenino , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/etiología , Arteriolas/fisiopatología , Diafragma/fisiopatología , Diafragma/irrigación sanguínea , Modelos Animales de Enfermedad , Vasodilatadores/farmacología , Endotelio Vascular/fisiopatología , Vasoconstricción , Monocrotalina/toxicidad , Ratas
4.
Am J Physiol Heart Circ Physiol ; 321(1): H1-H14, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33989084

RESUMEN

We tested the hypothesis that adiponectin deficiency attenuates cardiac and coronary microvascular function and prevents exercise training-induced adaptations of the myocardium and the coronary microvasculature in adult mice. Adult wild-type (WT) or adiponectin knockout (adiponectin KO) mice underwent treadmill exercise training or remained sedentary for 8-10 wk. Systolic and diastolic functions were assessed before and after exercise training or cage confinement. Vasoreactivity of coronary resistance arteries was assessed at the end of exercise training or cage confinement. Before exercise training, ejection fraction and fractional shortening were similar in adiponectin KO and WT mice, but isovolumic contraction time was significantly lengthened in adiponectin KO mice. Exercise training increased ejection fraction (12%) and fractional shortening (20%) with no change in isovolumic contraction time in WT mice. In adiponectin KO mice, both ejection fraction (-9%) and fractional shortening (-12%) were reduced after exercise training and these decreases were coupled to a further increase in isovolumic contraction time (20%). In sedentary mice, endothelium-dependent dilation to flow was higher in arterioles from adiponectin KO mice as compared with WT mice. Exercise training enhanced dilation to flow in WT mice but decreased flow-induced dilation in adiponectin KO mice. These data suggest that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice lacking adiponectin; however, in the absence of adiponectin, cardiac and coronary microvascular adaptations to exercise training are compromised.NEW & NOTEWORTHY We report that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice in which adiponectin has been deleted; however, when mice lacking adiponectin are subjected to the physiological stress of exercise training, beneficial coronary microvascular and cardiac adaptations are compromised or absent.


Asunto(s)
Adiponectina/genética , Corazón/fisiología , Condicionamiento Físico Animal/fisiología , Vasodilatación/fisiología , Adiponectina/metabolismo , Animales , Endotelio Vascular/fisiopatología , Masculino , Ratones , Ratones Noqueados , Microvasos/fisiología , Miocardio/metabolismo
5.
J Physiol ; 596(10): 1903-1917, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29623692

RESUMEN

KEY POINTS: In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. ABSTRACT: Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day-1 , 5 days week-1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth factor and endothelial nitric oxide synthase were significantly higher in the stretched limb. These results indicate that daily passive stretching of muscle enhances endothelium-dependent vasodilatation and induces angiogenesis. These microvascular adaptations may contribute to increased muscle blood flow during exercise in muscles that have undergone daily passive stretch.


Asunto(s)
Envejecimiento , Volumen Sanguíneo , Endotelio Vascular/fisiología , Hemodinámica , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Condicionamiento Físico Animal , Animales , Acción Capilar , Endotelio Vascular/citología , Masculino , Ejercicios de Estiramiento Muscular , Ratas , Ratas Endogámicas F344
6.
J Appl Physiol (1985) ; 124(1): 140-149, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29025901

RESUMEN

Coronary microvascular function and blood flow responses during acute exercise are impaired in the aged heart but can be restored by exercise training. Coronary microvascular resistance is directly dependent on vascular smooth muscle function in coronary resistance arterioles; therefore, we hypothesized that age impairs contractile function and alters the phenotype of vascular smooth muscle in coronary arterioles. We further hypothesized that exercise training restores contractile function and reverses age-induced phenotypic alterations of arteriolar smooth muscle. Young and old Fischer 344 rats underwent 10 wk of treadmill exercise training or remained sedentary. At the end of training or cage confinement, contractile responses, vascular smooth muscle proliferation, and expression of contractile proteins were assessed in isolated coronary arterioles. Both receptor- and non-receptor-mediated contractile function were impaired in coronary arterioles from aged rats. Vascular smooth muscle shifted from a differentiated, contractile phenotype to a secretory phenotype with associated proliferation of smooth muscle in the arteriolar wall. Expression of smooth muscle myosin heavy chain 1 (SM1) was decreased in arterioles from aged rats, whereas expression of phospho-histone H3 and of the synthetic protein ribosomal protein S6 (rpS6) were increased. Exercise training improved contractile responses, reduced smooth muscle proliferation and expression of rpS6, and increased expression of SM1 in arterioles from old rats. Thus age-induced contractile dysfunction of coronary arterioles and emergence of a secretory smooth muscle phenotype may contribute to impaired coronary blood flow responses, but arteriolar contractile responsiveness and a younger smooth muscle phenotype can be restored with late-life exercise training. NEW & NOTEWORTHY Aging impairs contractile function of coronary arterioles and induces a shift of the vascular smooth muscle toward a proliferative, noncontractile phenotype. Late-life exercise training reverses contractile dysfunction of coronary arterioles and restores a young phenotype to the vascular smooth muscle.


Asunto(s)
Envejecimiento/fisiología , Vasos Coronarios/fisiología , Microvasos/fisiología , Músculo Liso Vascular/fisiología , Condicionamiento Físico Animal/fisiología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Animales , Masculino , Músculo Liso Vascular/citología , Ratas Endogámicas F344 , Vasoconstricción
7.
J Physiol ; 595(12): 3703-3719, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28295341

RESUMEN

KEY POINTS: In a rat model of ageing that is free of atherosclerosis or hypertension, E/A, a diagnostic measure of diastolic filling, decreases, and isovolumic relaxation time increases, indicating that both active and passive ventricular relaxation are impaired with advancing age. Resting coronary blood flow and coronary functional hyperaemia are reduced with age, and endothelium-dependent vasodilatation declines with age in coronary resistance arterioles. Exercise training reverses age-induced declines in diastolic and coronary microvascular function. Thus, microvascular dysfunction and inadequate coronary perfusion are likely mechanisms of diastolic dysfunction in aged rats. Exercise training, initiated at an advanced age, reverses age-related diastolic and microvascular dysfunction; these data suggest that late-life exercise training can be implemented to improve coronary perfusion and diastolic function in the elderly. ABSTRACT: The risk for diastolic dysfunction increases with advancing age. Regular exercise training ameliorates age-related diastolic dysfunction; however, the underlying mechanisms have not been identified. We investigated whether (1) microvascular dysfunction contributes to the development of age-related diastolic dysfunction, and (2) initiation of late-life exercise training reverses age-related diastolic and microvascular dysfunction. Young and old rats underwent 10 weeks of exercise training or remained as sedentary, cage-controls. Isovolumic relaxation time (IVRT), early diastolic filling (E/A), myocardial performance index (MPI) and aortic stiffness (pulse wave velocity; PWV) were evaluated before and after exercise training or cage confinement. Coronary blood flow and vasodilatory responses of coronary arterioles were evaluated in all groups at the end of training. In aged sedentary rats, compared to young sedentary rats, a 42% increase in IVRT, a 64% decrease in E/A, and increased aortic stiffness (PWV: 6.36 ± 0.47 vs.4.89 ± 0.41, OSED vs. YSED, P < 0.05) was accompanied by impaired coronary blood flow at rest and during exercise. Endothelium-dependent vasodilatation was impaired in coronary arterioles from aged rats (maximal relaxation to bradykinin: 56.4 ± 5.1% vs. 75.3 ± 5.2%, OSED vs. YSED, P < 0.05). After exercise training, IVRT, a measure of active ventricular relaxation, did not differ between old and young rats. In old rats, exercise training reversed the reduction in E/A, reduced aortic stiffness, and eliminated impairment of coronary blood flow responses and endothelium-dependent vasodilatation. Thus, age-related diastolic and microvascular dysfunction are reversed by late-life exercise training. The restorative effect of exercise training on coronary microvascular function may result from improved endothelial function.


Asunto(s)
Vasos Coronarios/fisiología , Diástole/fisiología , Microvasos/fisiología , Condicionamiento Físico Animal/fisiología , Disfunción Ventricular/fisiopatología , Animales , Endotelio Vascular/fisiología , Masculino , Análisis de la Onda del Pulso/métodos , Ratas , Ratas Endogámicas F344 , Flujo Sanguíneo Regional/fisiología , Rigidez Vascular/fisiología , Vasodilatación/fisiología
8.
J Physiol ; 594(8): 2285-95, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26575597

RESUMEN

The distribution of blood flow to skeletal muscle during exercise is altered with advancing age. Changes in arteriolar function that are muscle specific underlie age-induced changes in blood flow distribution. With advancing age, functional adaptations that occur in resistance arterioles from oxidative muscles differ from those that occur in glycolytic muscles. Age-related adaptations of morphology, as well as changes in both endothelial and vascular smooth muscle signalling, differ in muscle of diverse fibre type. Age-induced endothelial dysfunction has been reported in most skeletal muscle arterioles; however, unique alterations in signalling contribute to the dysfunction in arterioles from oxidative muscles as compared with those from glycolytic muscles. In resistance arterioles from oxidative muscle, loss of nitric oxide signalling contributes significantly to endothelial dysfunction, whereas in resistance arterioles from glycolytic muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction. Similarly, adaptations of the vascular smooth muscle that occur with advancing age are heterogeneous between arterioles from oxidative and glycolytic muscles. In both oxidative and glycolytic muscle, late-life exercise training reverses age-related microvascular dysfunction, and exercise training appears to be particularly effective in reversing endothelial dysfunction. Patterns of microvascular ageing that develop among muscles of diverse fibre type and function may be attributable to changing patterns of physical activity with ageing. Importantly, aerobic exercise training, initiated even at an advanced age, restores muscle blood flow distribution patterns and vascular function in old animals to those seen in their young counterparts.


Asunto(s)
Envejecimiento/fisiología , Microcirculación , Microvasos/fisiología , Músculo Esquelético/irrigación sanguínea , Animales , Ejercicio Físico , Hemodinámica , Humanos , Microvasos/crecimiento & desarrollo , Microvasos/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología
9.
J Appl Physiol (1985) ; 118(7): 830-8, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25593287

RESUMEN

Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca(2+) mechanism (30-80 mM KCl) and thromboxane A2 receptors (10(-8) - 3 × 10(-5) M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 µM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 µM, 2 µM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress.


Asunto(s)
Adaptación Fisiológica/fisiología , Arterias Cerebrales/fisiología , Circulación Cerebrovascular/fisiología , Vuelo Espacial , Sistema Vasomotor/fisiología , Simulación de Ingravidez , Animales , Velocidad del Flujo Sanguíneo/fisiología , Calcio/metabolismo , Arterias Cerebrales/anatomía & histología , Módulo de Elasticidad/fisiología , Endotelio Vascular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Canales de Potasio con Entrada de Voltaje/fisiología , Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo , Nave Espacial , Rigidez Vascular/fisiología , Vasoconstricción/fisiología , Vasodilatación/fisiología
10.
J Appl Physiol (1985) ; 118(7): 904-11, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25634999

RESUMEN

To investigate whether exercise training can reverse age-related impairment of myogenic vasoconstriction in skeletal muscle arterioles, young (4 mo) and old (22 mo) male Fischer 344 rats were randomly assigned to either sedentary or exercise-trained groups. The roles of the endothelium and Kv1 channels in age- and exercise training-induced adaptations of myogenic responses were assessed through evaluation of pressure-induced constriction in endothelium-intact and denuded soleus muscle arterioles in the presence and absence of the Kv1 channel blocker, correolide. Exercise training enhanced myogenic constriction in arterioles from both old and young rats. In arterioles from old rats, exercise training restored myogenic constriction to a level similar to that of arterioles from young sedentary rats. Removal of the endothelium did not alter myogenic constriction of arterioles from young sedentary rats, but reduced myogenic constriction in arterioles from young exercise-trained rats. In contrast, endothelial removal had no effect on myogenic constriction of arterioles from old exercise-trained rats, but increased myogenic vasoconstriction in old sedentary rats. The effect of Kv1 channel blockade was also dependent on age and training status. In arterioles from young sedentary rats, Kv1 blockade had little effect on myogenic constriction, whereas in old sedentary rats Kv1 blockade increased myogenic constriction. After exercise training, Kv1 channel blockade increased myogenic constriction in arterioles from both young and old rats. Thus exercise training restores myogenic constriction of arterioles from old rats and enhances myogenic constriction from young rats through adaptations of the endothelium and smooth muscle Kv1 channels.


Asunto(s)
Envejecimiento/fisiología , Arteriolas/fisiología , Músculo Esquelético/fisiología , Músculo Liso/fisiología , Condicionamiento Físico Animal/métodos , Vasoconstricción/fisiología , Animales , Velocidad del Flujo Sanguíneo/fisiología , Masculino , Músculo Esquelético/irrigación sanguínea , Ratas , Ratas Endogámicas F344
11.
J Appl Physiol (1985) ; 117(6): 616-23, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25059239

RESUMEN

Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins.


Asunto(s)
Envejecimiento/fisiología , Vasos Coronarios/fisiología , Condicionamiento Físico Animal/fisiología , Resistencia Vascular/fisiología , Animales , Colágeno/metabolismo , Vasos Coronarios/metabolismo , Elastina/metabolismo , Técnicas In Vitro , Masculino , Contracción Muscular/fisiología , Nanotecnología , Ratas , Ratas Endogámicas F344 , Rigidez Vascular/fisiología
12.
Physiol Rep ; 2(6)2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24907295

RESUMEN

Aging leads to progressive pathophysiological changes in blood vessels of the brain and periphery. The aim of this study was to evaluate the effects of aging on cerebral vascular function and structure. Basilar arteries were isolated from male Fischer 344 cross Brown Norway (F344xBN) rats at 3, 8, and 24 months of age. The basilar arteries were cannulated in the pressurized system (90 cm H2O). Contractile responses to KCl (30-120 mmol/L) and endothelin-1 (10(-11)-10(-7) mol/L) were evaluated. Responses to acetylcholine (ACh) (10(-10)-10(-4) mol/L), diethylamine (DEA)-NONO-ate (10(-10)-10(-4) mol/L), and papaverin (10(-10)-10(-4) mol/L) were assessed to determine both endothelium-dependent and endothelium-independent responsiveness. Advanced aging (24 months) decreased responses of the basilar artery to both the contractile and relaxing agents; whereas, DEA-induced dilation was significantly higher in the 8-month-old group compared with the younger and older groups. The arterial wall-to-lumen ratio was significantly increased in 24-month-old rats. Smooth muscle cell count was also decreased in old rats. These findings indicate that aging produces dysfunction of both the endothelium and the vascular smooth muscle in the basilar artery. Aging also alters wall structure of the basilar artery, possibly through decreases in smooth muscle cell number and concomitant hypertrophy.

13.
FASEB J ; 27(6): 2282-92, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23457215

RESUMEN

Evidence indicates that cerebral blood flow is both increased and diminished in astronauts on return to Earth. Data from ground-based animal models simulating the effects of microgravity have shown that decrements in cerebral perfusion are associated with enhanced vasoconstriction and structural remodeling of cerebral arteries. Based on these results, the purpose of this study was to test the hypothesis that 13 d of spaceflight [Space Transportation System (STS)-135 shuttle mission] enhances myogenic vasoconstriction, increases medial wall thickness, and elicits no change in the mechanical properties of mouse cerebral arteries. Basilar and posterior communicating arteries (PCAs) were isolated from 9-wk-old female C57BL/6 mice for in vitro vascular and mechanical testing. Contrary to that hypothesized, myogenic vasoconstrictor responses were lower and vascular distensibility greater in arteries from spaceflight group (SF) mice (n=7) relative to ground-based control group (GC) mice (n=12). Basilar artery maximal diameter was greater in SF mice (SF: 236±9 µm and GC: 215±5 µm) with no difference in medial wall thickness (SF: 12.4±1.6 µm; GC: 12.2±1.2 µm). Stiffness of the PCA, as characterized via nanoindentation, was lower in SF mice (SF: 3.4±0.3 N/m; GC: 5.4±0.8 N/m). Collectively, spaceflight-induced reductions in myogenic vasoconstriction and stiffness and increases in maximal diameter of cerebral arteries signify that elevations in brain blood flow may occur during spaceflight. Such changes in cerebral vascular control of perfusion could contribute to increases in intracranial pressure and an associated impairment of visual acuity in astronauts during spaceflight.


Asunto(s)
Arterias Cerebrales/patología , Arterias Cerebrales/fisiopatología , Hipertensión Intracraneal/etiología , Ingravidez/efectos adversos , Animales , Astronautas , Circulación Cerebrovascular/fisiología , Femenino , Suspensión Trasera/efectos adversos , Suspensión Trasera/fisiología , Humanos , Hipertensión Intracraneal/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Vuelo Espacial , Vasoconstricción/fisiología
14.
J Appl Physiol (1985) ; 114(5): 681-93, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23288555

RESUMEN

Exercise training ameliorates age-related impairments in endothelium-dependent vasodilation in skeletal muscle arterioles. Additionally, exercise training is associated with increased superoxide production. The purpose of this study was to determine the role of superoxide and superoxide-derived reactive oxygen species (ROS) signaling in mediating endothelium-dependent vasodilation of soleus muscle resistance arterioles from young and old, sedentary and exercise-trained rats. Young (3 mo) and old (22 mo) male rats were either exercise trained or remained sedentary for 10 wk. To determine the impact of ROS signaling on endothelium-dependent vasodilation, responses to acetylcholine were studied under control conditions and during the scavenging of superoxide and/or hydrogen peroxide. To determine the impact of NADPH oxidase-derived ROS, endothelium-dependent vasodilation was determined following NADPH oxidase inhibition. Reactivity to superoxide and hydrogen peroxide was also determined. Tempol, a scavenger of superoxide, and inhibitors of NADPH oxidase reduced endothelium-dependent vasodilation in all groups. Similarly, treatment with catalase and simultaneous treatment with tempol and catalase reduced endothelium-dependent vasodilation in all groups. Decomposition of peroxynitrite also reduced endothelium-dependent vasodilation. Aging had no effect on arteriolar protein content of SOD-1, catalase, or glutathione peroxidase-1; however, exercise training increased protein content of SOD-1 in young and old rats, catalase in young rats, and glutathione peroxidase-1 in old rats. These data indicate that ROS signaling is necessary for endothelium-dependent vasodilation in soleus muscle arterioles, and that exercise training-induced enhancement of endothelial function occurs, in part, through an increase in ROS signaling.


Asunto(s)
Endotelio Vascular/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Acetilcolina/farmacología , Factores de Edad , Animales , Arteriolas/efectos de los fármacos , Arteriolas/metabolismo , Arteriolas/fisiología , Catalasa/metabolismo , Óxidos N-Cíclicos/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Factores Relajantes Endotelio-Dependientes/farmacología , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , NADPH Oxidasas/metabolismo , Óxido Nítrico/metabolismo , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Transducción de Señal/efectos de los fármacos , Marcadores de Spin , Superóxidos/metabolismo , Enseñanza , Resistencia Vascular , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Glutatión Peroxidasa GPX1
15.
Microcirculation ; 20(5): 365-76, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23198990

RESUMEN

OBJECTIVE: The risk for cardiovascular disease increases with advancing age; however, the chronological development of heart disease differs in males and females. The purpose of this study was to determine whether age-induced alterations in responses of coronary arterioles to the endogenous vasoconstrictor, endothelin, are sex-specific. METHODS: Coronary arterioles were isolated from young and old male and female rats to assess vasoconstrictor responses to endothelin (ET), and ETa and ETb receptor inhibitors were used to assess receptor-specific signaling. RESULTS: In intact arterioles from males, ET-induced vasoconstriction was reduced with age, whereas age increased vasoconstrictor responses to ET in intact arterioles from female rats. In intact arterioles from both sexes, blockade of either ETa or ETb eliminated age-related differences in responses to ET; however, denudation of arterioles from both sexes revealed age-related differences in ETa-mediated vasoconstriction. In arterioles from male rats, ETa receptor protein decreased, whereas ETb receptor protein increased with age. In coronary arterioles from females, neither ETa nor ETb receptor protein changed with age, suggesting age-related changes in ET signaling occur downstream of ET receptors. CONCLUSIONS: Thus, aging-induced alterations in responsiveness of the coronary resistance vasculature to endothelin are sex-specific, possibly contributing to sexual dimorphism in the risk of cardiovascular disease with advancing age.


Asunto(s)
Envejecimiento/fisiología , Circulación Coronaria/fisiología , Vasos Coronarios/metabolismo , Endotelinas/metabolismo , Receptores de Endotelina/metabolismo , Caracteres Sexuales , Vasoconstricción/fisiología , Animales , Arteriolas , Femenino , Masculino , Ratas , Ratas Endogámicas F344 , Resistencia Vascular/fisiología
16.
FASEB J ; 27(1): 399-409, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23099650

RESUMEN

Following exposure to microgravity, there is a reduced ability of astronauts to augment peripheral vascular resistance, often resulting in orthostatic hypotension. The purpose of this study was to test the hypothesis that mesenteric arteries and veins will exhibit diminished vasoconstrictor responses after spaceflight. Mesenteric arteries and veins from female mice flown on the Space Transportation System (STS)-131 (n=11), STS-133 (n=6), and STS-135 (n=3) shuttle missions and respective ground-based control mice (n=30) were isolated for in vitro experimentation. Vasoconstrictor responses were evoked in arteries via norepinephrine (NE), potassium chloride (KCl), and caffeine, and in veins through NE across a range of intraluminal pressures (2-12 cmH(2)O). Vasoconstriction to NE was also determined in mesenteric arteries at 1, 5, and 7 d postlanding. In arteries, maximal constriction to NE, KCl, and caffeine were reduced immediately following spaceflight and 1 d postflight. Spaceflight also reduced arterial ryanodine receptor-3 mRNA levels. In mesenteric veins, there was diminished constriction to NE after flight. The results indicate that the impaired vasoconstriction following spaceflight occurs through the ryanodine receptor-mediated intracellular Ca(2+) release mechanism. Such vascular changes in astronauts could compromise the maintenance of arterial pressure during orthostatic stress.


Asunto(s)
Adaptación Fisiológica , Arterias Mesentéricas/fisiología , Venas Mesentéricas/fisiología , Vuelo Espacial , Vasoconstricción , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
17.
J Appl Physiol (1985) ; 113(11): 1699-708, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23042906

RESUMEN

With old age, blood flow to the high-oxidative red skeletal muscle is reduced and blood flow to the low-oxidative white muscle is elevated during exercise. Changes in the number of feed arteries perforating the muscle are thought to contribute to this altered hyperemic response during exercise. We tested the hypothesis that exercise training would ameliorate age-related differences in blood flow during exercise and feed artery structure in skeletal muscle. Young (6-7 mo old, n = 36) and old (24 mo old, n = 25) male Fischer 344 rats were divided into young sedentary (Sed), old Sed, young exercise-trained (ET), and old ET groups, where training consisted of 10-12 wk of treadmill exercise. In Sed and ET rats, blood flow to the red and white portions of the gastrocnemius muscle (Gast(Red) and Gast(White)) and the number and luminal cross-sectional area (CSA) of all feed arteries perforating the muscle were measured at rest and during exercise. In the old ET group, blood flow was greater to Gast(Red) (264 ± 13 and 195 ± 9 ml · min(-1) · 100 g(-1) in old ET and old Sed, respectively) and lower to Gast(White) (78 ± 5 and 120 ± 6 ml · min(-1) · 100 g(-1) in old ET and old Sed, respectively) than in the old Sed group. There was no difference in the number of feed arteries between the old ET and old Sed group, although the CSA of feed arteries from old ET rats was larger. In young ET rats, there was an increase in the number of feed arteries perforating the muscle. Exercise training mitigated old age-associated differences in blood flow during exercise within gastrocnemius muscle. However, training-induced adaptations in resistance artery morphology differed between young (increase in feed artery number) and old (increase in artery CSA) animals. The altered blood flow pattern induced by exercise training with old age would improve the local matching of O(2) delivery to consumption within the skeletal muscle.


Asunto(s)
Envejecimiento , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Esfuerzo Físico , Resistencia Vascular , Adaptación Fisiológica , Factores de Edad , Animales , Presión Arterial , Arterias/anatomía & histología , Arterias/fisiología , Velocidad del Flujo Sanguíneo , Citrato (si)-Sintasa/metabolismo , Masculino , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/sangre , Consumo de Oxígeno , Ratas , Ratas Endogámicas F344 , Flujo Sanguíneo Regional , Conducta Sedentaria
18.
J Appl Physiol (1985) ; 113(9): 1439-45, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22984246

RESUMEN

Cardiovascular adaptations to microgravity undermine the physiological capacity to respond to orthostatic challenges upon return to terrestrial gravity. The purpose of the present study was to investigate the influence of spaceflight on vasoconstrictor and myogenic contractile properties of mouse gastrocnemius muscle resistance arteries. We hypothesized that vasoconstrictor responses acting through adrenergic receptors [norepinephrine (NE)], voltage-gated Ca(2+) channels (KCl), and stretch-activated (myogenic) mechanisms would be diminished following spaceflight. Feed arteries were isolated from gastrocnemius muscles, cannulated on glass micropipettes, and physiologically pressurized for in vitro experimentation. Vasoconstrictor responses to intraluminal pressure changes (0-140 cmH(2)O), KCl (10-100 mM), and NE (10(-9)-10(-4) M) were measured in spaceflown (SF; n = 11) and ground control (GC; n = 11) female C57BL/6 mice. Spaceflight reduced vasoconstrictor responses to KCl and NE; myogenic vasoconstriction was unaffected. The diminished vasoconstrictor responses were associated with lower ryanodine receptor-2 (RyR-2) and ryanodine receptor-3 (RyR-3) mRNA expression, with no difference in sarcoplasmic/endoplasmic Ca(2+) ATPase 2 mRNA expression. Vessel wall thickness and maximal intraluminal diameter were unaffected by spaceflight. The data indicate a deficit in intracellular calcium release via RyR-2 and RyR-3 in smooth muscle cells as the mechanism of reduced contractile activity in skeletal muscle after spaceflight. Furthermore, the results suggest that impaired end-organ vasoconstrictor responsiveness of skeletal muscle resistance arteries contributes to lower peripheral vascular resistance and less tolerance of orthostatic stress in humans after spaceflight.


Asunto(s)
Músculo Esquelético/irrigación sanguínea , Vuelo Espacial , Vasoconstricción/fisiología , Animales , Arterias/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Intolerancia Ortostática/etiología , Intolerancia Ortostática/fisiopatología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Ingravidez/efectos adversos
19.
Gend Med ; 9(4): 219-31, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22819558

RESUMEN

BACKGROUND: Aging kidneys exhibit slowly developing injury and women are usually protected compared with men, in association with maintained renal nitric oxide. OBJECTIVES: Our purpose was to test 2 hypotheses: (1) that aging intact Fischer-344 (F344) female rats exhibit less glomerular damage than similarly aged males, and (2) that loss of female ovarian hormones would lead to greater structural injury and dysregulation of the nitric oxide synthase (NOS) system in aging F344 rat kidneys. METHODS: We compared renal injury in F344 rats in intact, ovariectomized, and ovariectomized with estrogen replaced young (6 month) and old (24 month) female rats with young and old intact male rats and measured renal protein abundance of NOS isoforms and oxidative stress. RESULTS: There was no difference in age-dependent glomerular damage between young or old intact male and female F344 rats, and neither ovariectomy nor estrogen replacement affected renal injury; however, tubulointerstitial injury was greater in old males than in old females. These data suggest that ovarian hormones do not influence these aspects of kidney aging in F344 rats and that the greater tubulointerstitial injury is caused by male sex. Old males had greater kidney cortex NOS3 abundance than females, and NOS1 abundance (alpha and beta isoforms) was increased in old males compared with both young males and old females. NOS abundance was preserved with age in intact females, ovariectomy did not reduce NOS1 or NOS3 protein abundance, and estrogen replacement did not uniformly elevate NOS proteins, suggesting that estrogens are not primary regulators of renal NOS abundance in this strain. Nicotinamide adenine dinucleotide phosphate oxidase-dependent superoxide production and nitrotyrosine immunoreactivity were increased in aging male rat kidneys compared with females, which could compromise renal nitric oxide production and/or bioavailability. CONCLUSIONS: The kidney damage expressed in aging F344 rats is fairly mild and is not related to loss of renal cortex NOS3 or NOS1 alpha.


Asunto(s)
Envejecimiento/metabolismo , Corteza Renal/metabolismo , Glomérulos Renales/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Caracteres Sexuales , Factores de Edad , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Óxido Nítrico/metabolismo , Ratas , Ratas Endogámicas F344
20.
Microcirculation ; 19(1): 19-28, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21954960

RESUMEN

Cardiovascular aging is associated with a decline in the function of the vascular endothelium. Considerable evidence indicates that age-induced impairment of endothelium-dependent vasodilation results from a reduction in the availability of nitric oxide (NO(•) ). NO(•) can be scavenged by reactive oxygen species (ROS), in particular by superoxide radical (O(2) (•-) ), and age-related increases in ROS have been demonstrated to contribute to reduced endothelium-dependent vasodilation in numerous large artery preparations. In contrast, emerging data suggest that ROS may play a compensatory role in endothelial function of the aging microvasculature. The primary goal of this review is to discuss reports in the literature which indicate that ROS function as important signaling molecules in the aging microvasculature. Emphasis is placed upon discussion of the emerging roles of hydrogen peroxide (H(2) O(2) ) and peroxynitrite (ONOO(•-) ) in the aging microcirculation. Overall, existing data in animal models suggest that maintenance in the balance of ROS is critical to successful microvascular aging. The limited work that has been performed to investigate the role of ROS in human microvascular aging is also discussed, and the need for future investigations of ROS signaling in older humans is considered.


Asunto(s)
Envejecimiento/metabolismo , Endotelio Vascular/metabolismo , Microcirculación , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vasodilatación , Envejecimiento/patología , Animales , Endotelio Vascular/patología , Humanos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA