Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Trop Med Hyg ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917821

RESUMEN

Phleboviruses are an emerging threat to public health. Recent surveillance efforts in Kenya have unveiled novel phleboviruses. Despite these efforts, there remain knowledge gaps. This study tested female sandflies from diverse ecological settings in Kenya for arboviruses. Sandfly pools were cultured in Vero-CCL cells. Pools showing reproducible cytopathic effects were subjected to next-generation sequencing, followed by phylogenetic analysis. In vitro, cell kinetics analysis was performed using both Vero-E6 cells and C6/36 mosquito cells. One pool from Baringo, Kenya, tested positive for Bogoria virus (BOGV). The BOGV genome clustered in a single clade with previously obtained BOGV genomes. No significant differences were observed between Vero and C6/36 cell growth kinetics. This study has confirmed the presence of BOGV among sandflies in Baringo Kenya and demonstrated growth in mosquito cells.

2.
Virol J ; 18(1): 204, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641884

RESUMEN

BACKGROUND: Arbovirus surveillance and recurrence of outbreaks in Kenya continues to reveal the re-emergence of viruses of public health importance. This calls for sustained efforts in early detection and characterization of these agents to avert future potential outbreaks. METHODS: A larval survey was carried out in three different sites in Kwale County, Vanga, Jego and Lunga Lunga. All containers in every accessible household and compound were sampled for immature mosquitoes. In addition, adult mosquitoes were also sampled using CO2-baited CDC light traps and BG-Sentinel traps in the three sites and also in Tsuini. The mosquitoes were knocked down using trimethylamine and stored in a liquid nitrogen shipper for transportation to the laboratory where they were identified to species, pooled and homogenized ready for testing. RESULTS: A total of 366 houses and 1730 containers were inspected. The House Index (HI), Container Index (CI) and Breateau Index (BI) for Vanga Island were (3%: 0.66: 3.66) respectively. In Jego, a rural site, the HI, CI and BI were (2.4%: 0.48: 2.4) respectively. In Lunga Lunga, a site in an urban area, the HI, CI and BI were (22.03%: 3.97: 29.7) respectively. The indices suggest that this region is at risk of arbovirus transmission given they were above the WHO threshold (CI > 1, HI > 1% and BI > 5). The most productive containers were the concrete tanks (44.4%), plastic tank (22.2%), claypot (13.3%), plastic drums (8.9%), plastic basins (4%), jerricans (1.2%) and buckets (0.3%). Over 20,200 adult mosquitoes were collected using CDC light traps, and over 9,200 using BG- sentinel traps. These mosquitoes were screened for viruses by inoculating in Vero cells. Eleven Orthobunyavirus isolates were obtained from pools of Ae. pembaensis (4), Ae. tricholabis (1), Cx. quinquefasciatus (3), Culex spp. (1) and Cx. zombaensis (2). Five of the Orthobunyaviruses were sequenced and four of these were determined to be Bunyamwera viruses while one isolate was found to be Nyando virus. One isolate remained unidentified. CONCLUSIONS: These results indicate circulation of Orthobunyaviruses known to cause diverse grades of febrile illness with rash in humans in this region and highlights the need for continued monitoring and surveillance to avert outbreaks.


Asunto(s)
Aedes , Orthobunyavirus , Animales , Chlorocebus aethiops , Kenia/epidemiología , Mosquitos Vectores , Células Vero
3.
PLoS One ; 16(7): e0253955, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34197539

RESUMEN

BACKGROUND: Bunyamwera(BUNV) and Ngari (NGIV) viruses are arboviruses of medical importance globally, the viruses are endemic in Africa, Aedes(Ae) aegypti and Anopheles(An) gambiae mosquitoes are currently competent vectors for BUNV and NGIV respectively. Both viruses have been isolated from humans and mosquitoes in various ecologies of Kenya. Understanding the risk patterns and spread of the viruses necessitate studies of vector competence in local vector population of Ae. simpsoni sl which is abundant in the coastal region. This study sought to assess the ability of Ae. Simpsoni sl mosquitoes abundant at the Coast of Kenya to transmit these viruses in experimental laboratory experiments. METHODS: Field collected larvae/pupae of Ae. Simpsoni sl mosquitoes from Rabai, Kilifi County, were reared to adults, the first filial generation (F0) females' mosquitoes were orally exposed to infectious blood meal with isolates of the viruses using the hemotek membrane feeder. The exposed mosquitoes were incubated under insectary conditions and sampled on day 7, 14 and 21days post infection to determine susceptibility to the virus infection using plaque assay. RESULTS: A total of 379 (Bunyamwera virus 255 and Ngari virus 124) Ae. simpsoni sl were orally exposed to infectious blood meal. Overall, the infection rate (IR) for BUNV and NGIV were 2.7 and 0.9% respectively. Dissemination occurred in 5 out 7 mosquitoes with mid-gut infection for Bunyamwera virus and 1 out of 2 mosquitoes with mid-gut infection for Ngari virus. Further, the transmission was observed in 1 out of 5 mosquitoes that had disseminated infection and no transmission was observed for Ngari virus in all days post infection (dpi). CONCLUSION: Our study shows that Ae. simpsoni sl. is a laboratory competent vector for Bunyamwera virus since it was able to transmit the virus through capillary feeding while NGIV infection was restricted to midgut infection and disseminated infection, these finding adds information on the epidemiology of the viruses and vector control plan.


Asunto(s)
Aedes/virología , Arbovirus/genética , Virus Bunyamwera/genética , Virosis/transmisión , Animales , Arbovirus/patogenicidad , Virus Bunyamwera/patogenicidad , Virus Chikungunya/patogenicidad , Humanos , Kenia/epidemiología , Mosquitos Vectores/patogenicidad , Carga Viral/genética , Virosis/epidemiología , Virosis/genética , Virosis/virología , Virus Zika/patogenicidad
4.
Parasit Vectors ; 14(1): 138, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33673872

RESUMEN

BACKGROUND: Chikungunya virus is an alphavirus, primarily transmitted by Aedes aegypti and Ae. albopictus. In late 2017-2018, an outbreak of chikungunya occurred in Mombasa county, Kenya, and investigations were conducted to establish associated entomological risk factors. METHODS: Homes were stratified and water-filled containers inspected for immature Ae. aegypti, and larval indices were calculated. Adult mosquitoes were collected in the same homesteads using BG-Sentinel and CDC light traps and screened for chikungunya virus. Experiments were also conducted to determine the ability of Culex quinquefasciatus to transmit chikungunya virus. RESULTS: One hundred thirty-one houses and 1637 containers were inspected; 48 and 128 of them, respectively, were positive for immature Ae. aegypti, with the house index (36.60), container index (7.82) and Breteau index (97.71) recorded. Jerry cans (n = 1232; 72.26%) and clay pots (n = 2; 0.12%) were the most and least inspected containers, respectively, while drums, the second most commonly sampled (n = 249; 15.21%), were highly positive (65.63%) and productive (60%). Tires and jerry cans demonstrated the highest and lowest breeding preference ratios, 11.36 and 0.2, respectively. Over 6900 adult mosquitoes were collected and identified into 15 species comprising Cx. quinquefasciatus (n = 4492; 65.04%), Aedes vittatus (n = 1137; 16.46%) and Ae. aegypti (n = 911; 13.19%) and 2 species groups. Simpson's dominance and Shannon-Wiener diversity indices of 0.4388 and 1.1942 were recorded, respectively. Chikungunya virus was isolated from pools of Ae. aegypti (1) and Cx. quinquefasciatus (4), two of which were males. Minimum infection rates of 3.0 and 0.8 were observed for female Ae. aegypti and Cx. quinquefasciatus, respectively. Between 25 and 31.3% of exposed mosquitoes became infected with CHIKV 7, 14 and 21 days post-exposure. For the experimentally infected Cx. quinquefasciatus mosquitoes, between 13 and 40% had the virus disseminated, with 100% transmission being observed among those with disseminated infection. CONCLUSIONS: These results demonstrated high risk of chikungunya transmission for residents in the sampled areas of Mombasa. Transmission data confirmed the probable role played by Cx. quinquefasciatus in the outbreak while the role of Ae. vittatus in the transmission of chikungunya virus remains unknown.


Asunto(s)
Fiebre Chikungunya/transmisión , Culex/virología , Brotes de Enfermedades , Mosquitos Vectores/virología , Aedes/virología , Animales , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/virología , Virus Chikungunya/patogenicidad , Culex/clasificación , Composición Familiar , Femenino , Vivienda , Humanos , Kenia/epidemiología , Masculino , Mosquitos Vectores/clasificación , Factores de Riesgo , Carga Viral
5.
PLoS One ; 15(11): e0241754, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33156857

RESUMEN

Between late 2017 and mid-2018, a chikungunya fever outbreak occurred in Mombasa, Kenya that followed an earlier outbreak in mid-2016 in Mandera County on the border with Somalia. Using targeted Next Generation Sequencing, we obtained genomes from clinical samples collected during the 2017/2018 Mombasa outbreak. We compared data from the 2016 Mandera outbreak with the 2017/2018 Mombasa outbreak, and found that both had the Aedes aegypti adapting mutations, E1:K211E and E2:V264A. Further to the above two mutations, 11 of 15 CHIKV genomes from the Mombasa outbreak showed a novel triple mutation signature of E1:V80A, E1:T82I and E1:V84D. These novel mutations are estimated to have arisen in Mombasa by mid-2017 (2017.58, 95% HPD: 2017.23, 2017.84). The MRCA for the Mombasa outbreak genomes is estimated to have been present in early 2017 (2017.22, 95% HPD: 2016.68, 2017.63). Interestingly some of the earliest genomes from the Mombasa outbreak lacked the E1:V80A, E1:T82I and E1:V84D substitutions. Previous laboratory experiments have indicated that a substitution at position E1:80 in the CHIKV genome may lead to increased CHIKV transmissibility by Ae. albopictus. Genbank investigation of all available CHIKV genomes revealed that E1:V80A was not present; therefore, our data constitutes the first report of the E1:V80A mutation occurring in nature. To date, chikungunya outbreaks in the Northern and Western Hemispheres have occurred in Ae. aegypti inhabited tropical regions. Notwithstanding, it has been suggested that an Ae. albopictus adaptable ECSA or IOL strain could easily be introduced in these regions leading to a new wave of outbreaks. Our data on the recent Mombasa CHIKV outbreak has shown that a potential Ae. albopictus adapting mutation may be evolving within the East African region. It is even more worrisome that there exists potential for emergence of a CHIKV strain more adapted to efficient transmission by both Ae. albopictus and Ae.aegypti simultaneously. In view of the present data and history of chikungunya outbreaks, pandemic potential for such a strain is now a likely possibility in the future. Thus, continued surveillance of chikungunya backed by molecular epidemiologic capacity should be sustained to understand the evolving public health threat and inform prevention and control measures including the ongoing vaccine development efforts.


Asunto(s)
Fiebre Chikungunya/diagnóstico , Virus Chikungunya/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Mutación Missense , Proteínas Virales/genética , Secuenciación Completa del Genoma/métodos , Aedes/virología , Sustitución de Aminoácidos , Animales , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Brotes de Enfermedades , Humanos , Kenia , Mosquitos Vectores/virología , Filogenia , Análisis de Secuencia de ARN , Clima Tropical
6.
PLoS Negl Trop Dis ; 14(2): e0007979, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32084127

RESUMEN

INTRODUCTION: Multiple outbreaks of Rift Valley Fever (RVF) with devastating effects have occurred in East Africa. These outbreaks cause disease in both livestock and humans and affect poor households most severely. Communities living in areas practicing nomadic livestock movement may be at higher risk of infection. This study sought to i) determine the human exposure to Rift Valley fever virus (RVFV) in populations living within nomadic animal movement routes in Kenya; and ii) identify risk factors for RVFV infection in these communities. METHODS: A cross-sectional descriptive study design was used. Samples were collected from the year 2014 to 2015 in a community-based sampling exercise involving healthy individuals aged ≥18 years from Isiolo, Tana River, and Garissa counties. In total, 1210 samples were screened by ELISA for the presence of immunoglobulin IgM and IgG antibodies against RVFV. Positive results were confirmed by plaque reduction neutralization test. RESULTS: Overall, IgM and IgG prevalence for all sites combined was 1.4% (95% CI 0.8-2.3%) and 36.4% (95% CI 33.8-39.2%), respectively. Isiolo County recorded a non-significant higher IgG prevalence of 38.8% than Garissa 35.9% and Tana River 32.2% (Chi square = 2.5, df = 2, p = 0.287). Males were significantly at higher risk of infection by RVFV than females (OR = 1.67, 95% CI 1.17-2.39, p<0.005). Age was significantly associated with RVFV infection (Wald Chi = 94.2, df = 5, p<0.0001). Individuals who had regular contact with cattle (OR = 1.38, 95%CI 1.01-1.89) and donkeys (OR = 1.38, 95%CI 1.14-1.67), or contact with animals through birthing (OR = 1.69, 95%CI 1.14-2.51) were significantly at a greater risk of RVFV infection than those who did not. CONCLUSION: This study demonstrated that although the Isiolo County has been classified as being at medium risk for RVF, virus infection appeared to be as prevalent in humans as in Tana River and Garissa, which have been classified as being at high risk. Populations in these counties live within nomadic livestock movement routes and therefore at risk of being exposed to the RVFV. Interventions to control RVFV infections therefore, should target communities living along livestock movement pathways.


Asunto(s)
Fiebre del Valle del Rift/epidemiología , Fiebre del Valle del Rift/transmisión , Virus de la Fiebre del Valle del Rift/fisiología , Zoonosis/transmisión , Adolescente , Adulto , Anciano , Animales , Anticuerpos Antivirales/sangre , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina M/sangre , Kenia , Masculino , Persona de Mediana Edad , Fiebre del Valle del Rift/sangre , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/inmunología , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Adulto Joven , Zoonosis/sangre , Zoonosis/epidemiología , Zoonosis/virología
7.
PLoS Negl Trop Dis ; 12(10): e0006746, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30321181

RESUMEN

BACKGROUND: Kenya has experienced outbreaks of chikungunya in the past years with the most recent outbreak occurring in Mandera in the northern region in May 2016 and in Mombasa in the coastal region from November 2017 to February 2018. Despite the outbreaks in Kenya, studies on vector competence have only been conducted on Aedes aegypti. However, the role played by other mosquito species in transmission and maintenance of the virus in endemic areas remains unclear. This study sought to determine the possible role of rural Aedes bromeliae and Aedes vittatus in the transmission of chikungunya virus, focusing on Kilifi and West Pokot regions of Kenya. METHODS: Four day old female mosquitoes were orally fed on chikungunya virus-infected blood at a dilution of 1:1 of the viral isolate and blood (10(6.4) plaque-forming units [PFU]/ml) using artificial membrane feeder (Hemotek system) for 45 minutes. The engorged mosquitoes were picked and incubated at 29-30°C ambient temperature and 70-80% humidity in the insectary. At days 5, 7 and 10 post-infection, the mosquitoes were carefully dissected to separate the legs and wings from the body and their proboscis individually inserted in the capillary tube containing minimum essential media (MEM) to collect salivary expectorate. The resultant homogenates and the salivary expectorates were tested by plaque assay to determine virus infection, dissemination and transmission potential of the mosquitoes. RESULTS: A total of 515 female mosquitoes (311 Ae. bromeliae and 204 Ae. vittatus) were exposed to the East/Central/South Africa (ECSA) lineage of chikungunya virus. Aedes vittatus showed high susceptibility to the virus ranging between 75-90% and moderate dissemination and transmission rates ranging from 35-50%. Aedes bromeliae had moderate susceptibility ranging between 26-40% with moderate dissemination and transmission rates ranging from 27-55%. CONCLUSION: This study demonstrates that both Ae. vittatus and Ae. bromeliae populations from West Pokot and Kilifi counties in Kenya are competent vectors of chikungunya virus. Based on these results, the two areas are at risk of virus transmission in the event of an outbreak. This study underscores the need to institute vector competence studies for populations of potential vector species as a means of evaluating risk of transmission of the emerging and re-emerging arboviruses in diverse regions of Kenya.


Asunto(s)
Aedes/virología , Virus Chikungunya/aislamiento & purificación , Mosquitos Vectores/virología , Animales , Femenino , Kenia , Carga Viral , Ensayo de Placa Viral
8.
PLoS Negl Trop Dis ; 11(8): e0005860, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28820881

RESUMEN

BACKGROUND: In April, 2004, chikungunya virus (CHIKV) re-emerged in Kenya and eventually spread to the islands in the Indian Ocean basin, South-East Asia, and the Americas. The virus, which is often associated with high levels of viremia in humans, is mostly transmitted by the urban vector, Aedes aegypti. The expansion of CHIKV presents a public health challenge both locally and internationally. In this study, we investigated the ability of Ae. aegypti mosquitoes from three distinct cities in Kenya; Mombasa (outbreak prone), Kisumu, and Nairobi (no documented outbreak) to transmit CHIKV. METHODOLOGY/PRINCIPAL FINDINGS: Aedes aegypti mosquito populations were exposed to different doses of CHIKV (105.6-7.5 plaque-forming units[PFU]/ml) in an infectious blood meal. Transmission was ascertained by collecting and testing saliva samples from individual mosquitoes at 5, 7, 9, and 14 days post exposure. Infection and dissemination were estimated by testing body and legs, respectively, for individual mosquitoes at selected days post exposure. Tissue culture assays were used to determine the presence of infectious viral particles in the body, leg, and saliva samples. The number of days post exposure had no effect on infection, dissemination, or transmission rates, but these rates increased with an increase in exposure dose in all three populations. Although the rates were highest in Ae. aegypti from Mombasa at titers ≥106.9 PFU/ml, the differences observed were not statistically significant (χ2 ≤ 1.04, DF = 1, P ≥ 0.31). Overall, about 71% of the infected mosquitoes developed a disseminated infection, of which 21% successfully transmitted the virus into a capillary tube, giving an estimated transmission rate of about 10% for mosquitoes that ingested ≥106.9 PFU/ml of CHIKV. All three populations of Ae. aegypti were infectious as early as 5-7 days post exposure. On average, viral dissemination only occurred when body titers were ≥104 PFU/ml in all populations. CONCLUSIONS/SIGNIFICANCE: Populations of Ae. aegypti from Mombasa, Nairobi, and Kisumu were all competent laboratory vectors of CHIKV. Viremia of the infectious blood meal was an important factor in Ae. aegypti susceptibility and transmission of CHIKV. In addition to viremia levels, temperature and feeding behavior of Ae. aegypti may also contribute to the observed disease patterns.


Asunto(s)
Aedes/virología , Virus Chikungunya/aislamiento & purificación , Carga Viral , Animales , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/virología , Ciudades , Insectos Vectores/virología , Kenia , Saliva/virología , Temperatura
9.
Virol J ; 13: 114, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27357190

RESUMEN

BACKGROUND: Aedes aegypti is a competent arthropod vector of chikungunya virus (CHIKV). The rate at which the virus disseminate in the vector is limited by temperature of their environment which can be an important determinant of geographical and seasonal limits to transmission by the arthropods in the tropics. This study investigated the vector competence of Ae. aegypti for CHIKV at ambient temperature of 32 and 26 °C (Coastal and Western Kenya respectively) reared at Extrinsic Incubation Temperature (EIT) of 32 and 26 °C that resembles those in the two regions. METHODS: Ae. aegypti eggs were collected from coastal and Western Kenya, hatched in the insectary and reared to F1 generation. Four-day old mosquitoes were exposed to CHIKV through a membrane feeding. They were then incubated in temperatures mimicking the mean annual temperatures for Trans-Nzoia (26 °C) and Lamu (32 °C). After every 7, 10 and 13 days post infection (DPI); one third of exposed mosquitoes were sampled and assayed for virus infection and dissemination. RESULTS: The midgut infection rates (MIR) of Ae. aegypti sampled from Coastal Region was significantly (p < 0.05) higher than those sampled from Western Kenya, with no statistical differences observed for the coastal Ae. aegypti at EIT 26 and at 32 °C. The MIR of Ae. aegypti from the Western Region was significantly (p < 0.05) affected by the EIT, with mosquito reared at EIT 32 °C exhibiting higher MIR than those reared at EIT 26 °C. There was a significant (p < 0.05) interactive effects of the region, EIT and DPI on MIR. The disseminated infection rates for the CHIKV in Ae. aegypti in the legs (DIR-L) was higher in mosquitoes sampled from Coast regardless of the EIT while those from Western Kenya, dissemination rates were significantly higher at higher EIT of 32 °C. CONCLUSIONS: Vector competence was higher in mosquito populations reared under high temperatures which weakens the midgut infection barrier. Hence, suggesting Lamu population is more susceptible to CHIKV therefore having a weaker mid gut infection barrier than the Trans Nzoia population. These underscores importance of examining the course of infection at various ambient temperatures and EIT between regions mosquito populations.


Asunto(s)
Aedes/virología , Fiebre Chikungunya/transmisión , Virus Chikungunya/fisiología , Insectos Vectores/virología , Aedes/fisiología , Animales , Fiebre Chikungunya/virología , Humanos , Insectos Vectores/fisiología , Temperatura
10.
PLoS Negl Trop Dis ; 8(12): e3364, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474018

RESUMEN

Rift Valley fever (RVF) outbreaks in Kenya have increased in frequency and range to include northeastern Kenya where viruses are increasingly being isolated from known (Aedes mcintoshi) and newly-associated (Ae. ochraceus) vectors. The factors contributing to these changing outbreak patterns are unclear and the population genetic structure of key vectors and/or specific virus-vector associations, in particular, are under-studied. By conducting mitochondrial and nuclear DNA analyses on >220 Kenyan specimens of Ae. mcintoshi and Ae. ochraceus, we uncovered high levels of vector complexity which may partly explain the disease outbreak pattern. Results indicate that Ae. mcintoshi consists of a species complex with one of the member species being unique to the newly-established RVF outbreak-prone northeastern region of Kenya, whereas Ae. ochraceus is a homogeneous population that appears to be undergoing expansion. Characterization of specimens from a RVF-prone site in Senegal, where Ae. ochraceus is a primary vector, revealed direct genetic links between the two Ae. ochraceus populations from both countries. Our data strongly suggest that unlike Ae. mcintoshi, Ae. ochraceus appears to be a relatively recent, single 'introduction' into Kenya. These results, together with increasing isolations from this vector, indicate that Ae. ochraceus will likely be of greater epidemiological importance in future RVF outbreaks in Kenya. Furthermore, the overall vector complexity calls into question the feasibility of mosquito population control approaches reliant on genetic modification.


Asunto(s)
Aedes/genética , Aedes/virología , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Animales , Brotes de Enfermedades , Femenino , Genética de Población , Kenia/epidemiología , Control de Mosquitos , Fiebre del Valle del Rift/epidemiología , Fiebre del Valle del Rift/transmisión
11.
Parasit Vectors ; 7: 435, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25223760

RESUMEN

BACKGROUND: Susceptibility of Ae. aegypti mosquito to dengue virus (DENV) varies geographically and can be influenced by climatic factors such as temperature, which affect the incidence, seasonality and distribution of vector-borne diseases. The first outbreak of dengue fever (DF) in Kenya occured in 1982 in the coastal towns of Malindi and Kilifi. Unlike Nairobi where no active dengue transmission has been reported, DF is currently re-emerging at the Coast causing major outbreaks. This study investigated the vector competence of Ae. aegypti populations from two urban areas, Kilifi (Coast of Kenya) and Nairobi (Central Kenya), for DEN-2 virus and the influence of temperature on the same. METHODS: Four-day old adult female Ae. aegypti mosquitoes collected as eggs from the two sites were exposed to defibrinated sheep blood mixed with DEN-2 virus (105.08 PFU/ml) using a membrane feeder. Half of the exposed mosquitoes were incubated at high temperature (30°C) and the other half at low temperature (26°C), and every 7 days up to day 21 post-infection 30% of the exposed mosquitoes were randomly picked, individually dissected, separated into abdomen and legs, and tested for midgut and disseminated infection, respectively, including virus quantification by plaque assay using Vero cells. RESULTS: Nairobi mosquito populations exhibited significantly higher midgut infection rates (16.8%) compared to the Kilifi population (9%; p = 0.0001). Midgut infection rates among the populations varied with temperature levels with a significantly higher infection rate observed for Nairobi at high (21.3%) compared to low temperature (12.0%; p = 0.0037). Similarly, for the Kilifi population, a significantly higher infection rate was recorded at high (11.6%) relative to low temperature (6.8%; p = 0.0162). It is however, noteworthy that disseminated infection was higher among the Kilifi mosquito population (40.7%) than in Nairobi mosquitoes (10.3%; p < 0.0001). CONCLUSION: The findings show a clear inherent difference between the two populations in their ability to develop disseminated infection with high temperature having an added effect of enhancing vector competence. Therefore, the inherent difference among the two populations of Ae. aegypti coupled with prevailing ambient temperature could partly explain the distribution of dengue 2 virus between the Coastal and Nairobi regions in Kenya.


Asunto(s)
Aedes/virología , Virus del Dengue/fisiología , Distribución Animal , Animales , Femenino , Interacciones Huésped-Patógeno , Kenia
12.
J Med Entomol ; 51(1): 269-77, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24605478

RESUMEN

Biodiversity and relative abundance of ticks and associated arboviruses in Garissa (northeastern) and Isiolo (eastern) provinces of Kenya were evaluated. Ticks were collected from livestock, identified to species, pooled, and processed for virus isolation. In Garissa, Rhipicephalus pulchellus Gerstacker (57.8%) and Hyalomma truncatum Koch (27.8%) were the most abundant species sampled, whereas R. pulchellus (80.4%) and Amblyomma gemma Donitz (9.6%) were the most abundant in Isiolo. Forty-four virus isolates, comprising Dugbe virus (DUGV; n = 22) and Kupe virus (n = 10; Bunyaviridae: Nirovirus), Dhori virus (DHOV; n = 10; Orthomyxoviridae: Thogotovirus),and Ngari virus (NRIV; n = 2; Bunyaviridae: Orthobunyavirus), were recovered mostly from R. pulchellus sampled in Isiolo. DUGV was mostly recovered from R. pulchellus from sheep and cattle, and DHOV from R. pulchellus from sheep. All Kupe virus isolates were from Isiolo ticks, including R. pulchellus from all the livestock, A. gemma and Amblyomma variegatum F. from cattle, and H. truncatum from goat. NRIV was obtained from R. pulchellus and A. gemma sampled from cattle in Isiolo and Garissa, respectively, while all DHOV and most DUGV (n = 12) were from R. pulchellus sampled from cattle in Garissa. DUGV was also recovered from H. truncatum and Amblyomma hebraeum Koch from cattle and from Rhipicephalus annulatus Say from camel. This surveillance study has demonstrated the circulation of select tick-borne viruses in parts of eastern and northeastern provinces of Kenya, some of which are of public health importance. The isolation of NRIV from ticks is particularly significant because it is usually known to be a mosquito-borne virus affecting humans.


Asunto(s)
Arbovirus/aislamiento & purificación , Vectores Artrópodos/virología , Garrapatas/virología , Animales , Camelus/parasitología , Bovinos , Cabras/parasitología , Humanos , Kenia , Ovinos/parasitología
13.
Vector Borne Zoonotic Dis ; 13(9): 637-42, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23805790

RESUMEN

Tick-borne viruses infect humans through the bite of infected ticks during opportunistic feeding or through crushing of ticks by hand and, in some instances, through contact with infected viremic animals. The Ijara District, an arid to semiarid region in northern Kenya, is home to a pastoralist community for whom livestock keeping is a way of life. Part of the Ijara District lies within the boundaries of a Kenya Wildlife Service-protected conservation area. Arbovirus activity among mosquitoes, animals, and humans is reported in the region, mainly because prevailing conditions necessitate that people continuously move their animals in search of pasture, bringing them in contact with ongoing arbovirus transmission cycles. To identify the tick-borne viruses circulating among these communities, we analyzed ticks sampled from diverse animal hosts. A total of 10,488 ticks were sampled from both wildlife and livestock hosts and processed in 1520 pools of up to eight ticks per pool. The sampled ticks were classified to species, processed for virus screening by cell culture using Vero cells and RT-PCR (in the case of Hyalomma species), followed by amplicon sequencing. The tick species sampled included Rhipicephalus pulchellus (76.12%), Hyalomma truncatum (8.68%), Amblyomma gemma (5.00%), Amblyomma lepidum (4.34%), and others (5.86%). We isolated and identified Bunyamwera (44), Dugbe (5), Ndumu (2), Semliki forest (25), Thogoto (3), and West Nile (3) virus strains. This observation constitutes a previously unreported detection of mosquito-borne Semliki forest and Bunyamwera viruses in ticks, and association of West Nile virus with A. gemma and Rh. pulchellus ticks. These findings provide additional evidence on the potential role of ticks and associated animals in the circulation of diverse arboviruses in northeastern Kenya, including viruses previously known to be essentially mosquito borne.


Asunto(s)
Vectores Arácnidos/clasificación , Infecciones por Arbovirus/epidemiología , Arbovirus/aislamiento & purificación , Ixodidae/clasificación , Animales , Animales Salvajes , Vectores Arácnidos/virología , Infecciones por Arbovirus/virología , Arbovirus/clasificación , Chlorocebus aethiops , Estudios Transversales , Humanos , Ixodidae/virología , Kenia/epidemiología , Ganado , Rhipicephalus/clasificación , Rhipicephalus/virología , Análisis de Secuencia de ADN , Células Vero
14.
J Vector Ecol ; 38(1): 134-42, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23701618

RESUMEN

The diversity of mosquito arbovirus vectors was investigated to define regional risk of arbovirus transmission in Kenya. Mosquitoes were sampled between April, 2007 and December, 2010 at thirteen sites across seven administrative provinces and ecological zones. CDC light traps were used to collect mosquitoes while human-landing collection was conducted in five of the sites to target day-feeding Aedes (Stegomyia) species. Over 524,000 mosquitoes were collected and identified into 101 species, 30 of them known vectors of arboviruses endemic to Kenya. Ae. (Neomelaniconion) mcintoshi and Ae. (Aedimorphus) ochraceus were most abundant in Garissa in the arid northeastern province, and Mansonia uniformis and Mn. africana in semi-arid Baringo in the Rift Valley Province. Ae. ochraceus, Mn. africana and Mn. uniformis were also significant in Nyanza Province, while Ae. (Neomelaniconion) circumluteolus predominated in Budalangi, Western Province. Aedes (Stegomyia) aegypti was predominant in Rabai in the Coast Province but insignificant in the western and Nyanza sites. Culex pipiens was abundant in Rift Valley and Nyanza Provinces around the lake shores. This study highlights the potential for emergence and re-emergence of arboviral diseases among vulnerable populations. This calls for comprehensive mapping of vector distribution and abundance for planning focused vector control measures.


Asunto(s)
Culicidae/fisiología , Insectos Vectores/fisiología , Salud Pública , Animales , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/transmisión , Arbovirus/patogenicidad , Culicidae/clasificación , Culicidae/virología , Ecología , Geografía , Insectos Vectores/clasificación , Insectos Vectores/virología , Kenia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA