Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMC Public Health ; 24(1): 1001, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600540

RESUMEN

BACKGROUND: Evidence has shown that the risk of transmission of SARS-CoV-2 is much higher in prisons than in the community. The release of the COVID-19 vaccine and the recommendation by WHO to include prisons among priority settings have led to the inclusion of prisons in national COVID-19 vaccination strategies. Evidence on prison health and healthcare services provision is limited and often focuses on a single country or institution due to the multiple challenges of conducting research in prison settings. The present study was done in the framework of the EU-founded project RISE-Vac. It aimed to analyse the best practices and challenges applied in implementing COVID-19 universal vaccination services during the pandemic to support future expansion of routine life course vaccination services for people living in prison (PLP). METHODS: Two online cross-sectional surveys were designed and piloted: survey1 on prison characteristics and (non-COVID-19) immunisation practices; survey2 on the implementation and coverage of COVID-19 vaccination with open-ended questions for thematic analysis. Each RISE-Vac project partner distributed the questionnaire to one or two prisons in their country. Answers were collected from eight European prisons' directors or medical directors between November 2021-May 2022. RESULTS: According to our findings, the implementation modalities of COVID-19 vaccination services in the surveyed prisons were effective in improving PLP vaccination coverage. Strategies for optimal management of the vaccination campaign included: periodic time slot for PLP vaccination; new staff recruitment and task shifting; distribution of informational material both to PLP and prison staff. Key challenges included continuity of care after release, immunisation information system, and vaccine hesitancy. CONCLUSIONS: To the best of our knowledge, this is the first study describing the implementation of COVID-19 vaccination services in European prisons, suggesting that the expansion of vaccination provision in prison is possible. There is no unique solution that will fit every country but commonalities likely to be important in the design and implementation of future vaccination campaigns targeting PLP emerged. Increased availability of vaccination services in prison is not only possible, but feasible and highly desirable, and can contribute to the reduction of health inequalities.


Asunto(s)
COVID-19 , Prisioneros , Humanos , Prisiones , Vacunas contra la COVID-19/uso terapéutico , Estudios Transversales , Acontecimientos que Cambian la Vida , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Vacunación
2.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901775

RESUMEN

Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule.


Asunto(s)
Epidermólisis Ampollosa Distrófica , Epidermólisis Ampollosa , Humanos , Trans-Empalme , Piel/metabolismo , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa/genética , Queratinocitos/metabolismo , Colágeno Tipo VII/genética , Mutación
3.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35163654

RESUMEN

Mutations within the COL7A1 gene underlie the inherited recessive subtype of the blistering skin disease dystrophic epidermolysis bullosa (RDEB). Although gene replacement approaches for genodermatoses are clinically advanced, their implementation for RDEB is challenging and requires endogenous regulation of transgene expression. Thus, we are using spliceosome-mediated RNA trans-splicing (SMaRT) to repair mutations in COL7A1 at the mRNA level. Here, we demonstrate the capability of a COL7A1-specific RNA trans-splicing molecule (RTM), initially selected using a fluorescence-based screening procedure, to accurately replace COL7A1 exons 1 to 64 in an endogenous setting. Retroviral RTM transduction into patient-derived, immortalized keratinocytes resulted in an increase in wild-type transcript and protein levels, respectively. Furthermore, we revealed accurate deposition of recovered type VII collagen protein within the basement membrane zone of expanded skin equivalents using immunofluorescence staining. In summary, we showed for the first time the potential of endogenous 5' trans-splicing to correct pathogenic mutations within the COL7A1 gene. Therefore, we consider 5' RNA trans-splicing a suitable tool to beneficially modulate the RDEB-phenotype, thus targeting an urgent need of this patient population.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa/genética , ARN/metabolismo , Humanos , Empalme del ARN , Trans-Empalme
4.
J Invest Dermatol ; 141(4): 883-893.e6, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32946877

RESUMEN

Dystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment. Prolonging wound-free episodes by improving the quality of wound healing would therefore confer substantial benefit for individuals with DEB. The collagenous domain of collagen VII is encoded by 82 in-frame exons, which makes splice-modulation therapies attractive for DEB. Indeed, antisense oligonucleotide-based exon skipping has shown promise for RDEB. However, the suitability of antisense oligonucleotides for treatment of DDEB remains unexplored. Here, we developed QR-313, a clinically applicable, potent antisense oligonucleotide specifically targeting exon 73. We show the feasibility of topical delivery of QR-313 in a carbomer-composed gel for treatment of wounds to restore collagen VII abundance in human RDEB skin. Our data reveal that QR-313 also shows direct benefit for DDEB caused by exon 73 mutations. Thus, the same topically applied therapeutic could be used to improve the wound healing quality in RDEB and DDEB.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/terapia , Terapia Genética/métodos , Oligonucleótidos Antisentido/administración & dosificación , Cicatrización de Heridas/genética , Animales , Biopsia , Línea Celular , Modelos Animales de Enfermedad , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Exones/genética , Fibroblastos , Fibrosis , Humanos , Queratinocitos , Ratones , Ratones Transgénicos , Mutación , Oligonucleótidos Antisentido/genética , Cultivo Primario de Células , Piel/efectos de los fármacos
5.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096920

RESUMEN

The Duchenne muscular dystrophy (DMD) gene has a complex expression pattern regulated by multiple tissue-specific promoters and by alternative splicing (AS) of the resulting transcripts. Here, we used an RNAi-based approach coupled with DMD-targeted RNA-seq to identify RNA-binding proteins (RBPs) that regulate splicing of its skeletal muscle isoform (Dp427m) in a human muscular cell line. A total of 16 RBPs comprising the major regulators of muscle-specific splicing events were tested. We show that distinct combinations of RBPs maintain the correct inclusion in the Dp427m of exons that undergo spatio-temporal AS in other dystrophin isoforms. In particular, our findings revealed the complex networks of RBPs contributing to the splicing of the two short DMD exons 71 and 78, the inclusion of exon 78 in the adult Dp427m isoform being crucial for muscle function. Among the RBPs tested, QKI and DDX5/DDX17 proteins are important determinants of DMD exon inclusion. This is the first large-scale study to determine which RBP proteins act on the physiological splicing of the DMD gene. Our data shed light on molecular mechanisms contributing to the expression of the different dystrophin isoforms, which could be influenced by a change in the function or expression level of the identified RBPs.


Asunto(s)
Distrofina/genética , Exones , Proteínas con Motivos de Reconocimiento de ARN/genética , Adulto , Empalme Alternativo , Línea Celular , Regulación de la Expresión Génica , Humanos , Intrones , Mioblastos Esqueléticos/fisiología , Interferencia de ARN
6.
Sci Rep ; 10(1): 11164, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636404

RESUMEN

Human skin contains a population of memory T cells that supports tissue homeostasis and provides protective immunity. The study of human memory T cells is often restricted to in vitro studies and to human PBMC serving as primary cell source. Because the tissue environment impacts the phenotype and function of memory T cells, it is crucial to study these cells within their tissue. Here we utilized immunodeficient NOD-scid IL2rγnull (NSG) mice that carried in vivo-generated engineered human skin (ES). ES was generated from human keratinocytes and fibroblasts and was initially devoid of skin-resident immune cells. Upon adoptive transfer of human PBMC, this reductionist system allowed us to study human T cell recruitment from a circulating pool of T cells into non-inflamed human skin in vivo. Circulating human memory T cells preferentially infiltrated ES and showed diverse functional profiles of T cells found in fresh human skin. The chemokine and cytokine microenvironment of ES closely resembled that of non-inflamed human skin. Upon entering the ES T cells assumed a resident memory T cell-like phenotype in the absence of infection, and a proportion of these cutaneous T cells can be locally activated upon injection of monocyte derived dendritic cells (moDCs) that presented Candida albicans. Interestingly, we found that CD69+ memory T cells produced higher levels of effector cytokines in response to Candida albicans, compared to CD69- T cells. Overall, this model has broad utility in many areas of human skin immunology research, including the study of immune-mediated skin diseases.


Asunto(s)
Memoria Inmunológica , Piel/inmunología , Linfocitos T/inmunología , Adulto , Animales , Linfocitos T CD4-Positivos/inmunología , Candida albicans/inmunología , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Persona de Mediana Edad , Piel/citología , Trasplante de Piel , Ingeniería de Tejidos
7.
Cell Commun Signal ; 18(1): 61, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32276641

RESUMEN

BACKGROUND: Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. METHODS: MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. RESULTS: Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. CONCLUSION: The discovery that miR-10b mediates an aspect of cancer stemness - that of enhanced tumor cell adhesion, known to facilitate metastatic colonization - provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.


Asunto(s)
Carcinoma de Células Escamosas , Epidermólisis Ampollosa Distrófica/patología , MicroARNs/fisiología , Células Madre Neoplásicas , Neoplasias Cutáneas , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Invasividad Neoplásica , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Cultivo Primario de Células , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
8.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29518954

RESUMEN

In recent years, RNA trans-splicing has emerged as a suitable RNA editing tool for the specific replacement of mutated gene regions at the pre-mRNA level. Although the technology has been successfully applied for the restoration of protein function in various genetic diseases, a higher trans-splicing efficiency is still desired to facilitate its clinical application. Here, we describe a modified, easily applicable, fluorescence-based screening system for the generation and analysis of antisense molecules specifically capable of improving the RNA reprogramming efficiency of a selected KRT14-specific RNA trans-splicing molecule. Using this screening procedure, we identified several antisense RNAs and short rationally designed oligonucleotides, which are able to increase the trans-splicing efficiency. Thus, we assume that besides the RNA trans-splicing molecule, short antisense molecules can act as splicing modulators, thereby increasing the trans-splicing efficiency to a level that may be sufficient to overcome the effects of certain genetic predispositions, particularly those associated with dominantly inherited diseases.


Asunto(s)
Regulación de la Expresión Génica , Oligonucleótidos Antisentido , Interferencia de ARN , Empalme del ARN , Trans-Empalme , Línea Celular , Edición Génica , Genes Reporteros , Humanos , Sitios de Empalme de ARN
9.
Adv Drug Deliv Rev ; 129: 330-343, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29248480

RESUMEN

Chronic wounding as a result of recurrent skin blistering in the painful genetic skin disease epidermolysis bullosa, may lead to life-threatening infections, increased risk of tumor formation, and other serious medical complications. Therefore, epidermolysis bullosa patients have an urgent need for optimal wound care and tissue regeneration. Therapeutic strategies using gene-, protein-, and cell-therapies are being developed to improve clinical symptoms, and some of them have already been investigated in early clinical trials. The most favorable options of functional therapies include gene replacement, gene editing, RNA targeting, and harnessing natural gene therapy. This review describes the current progress of the different approaches targeting autologous skin cells, and will discuss the benefits and challenges of their application.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Epidermólisis Ampollosa/terapia , Terapia Genética , Piel/patología , Cicatrización de Heridas/efectos de los fármacos , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa/patología , Edición Génica , Humanos , Cicatrización de Heridas/genética
10.
Nucleic Acids Res ; 45(17): 10259-10269, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973459

RESUMEN

Functional impairment or complete loss of type VII collagen, caused by mutations within COL7A1, lead to the severe recessive form of the skin blistering disease dystrophic epidermolysis bullosa (RDEB). Here, we successfully demonstrate RNA trans-splicing as an auspicious repair option for mutations located in a wide range of exons by fully converting an RDEB phenotype in an ex vivo pre-clinical mouse model based on xenotransplantation. Via a self-inactivating (SIN) lentiviral vector a 3' RNA trans-splicing molecule, capable of replacing COL7A1 exons 65-118, was delivered into type VII collagen deficient patient keratinocytes, carrying a homozygous mutation in exon 80 (c.6527insC). Following vector integration, protein analysis of an isolated corrected single cell clone showed secretion of the corrected type VII collagen at similar levels compared to normal keratinocytes. To confirm full phenotypic and long-term correction in vivo, patches of skin equivalents expanded from the corrected cell clone were grafted onto immunodeficient mice. Immunolabelling of 12 weeks old skin specimens showed strong expression of human type VII collagen restricted to the basement membrane zone. We demonstrate that the RNA trans-splicing technology combined with a SIN lentiviral vector is suitable for an ex vivo molecular therapy approach and thus adaptable for clinical application.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/terapia , Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , ARN/uso terapéutico , Trans-Empalme , Animales , Membrana Basal/metabolismo , Células Cultivadas , Colágeno Tipo VII/deficiencia , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Vectores Genéticos/genética , Vectores Genéticos/farmacología , Xenoinjertos , Humanos , Queratinocitos/metabolismo , Queratinocitos/trasplante , Lentivirus/genética , Ratones , Modelos Animales , ARN/administración & dosificación , ARN/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Trasplante de Piel , Transgenes
11.
Mol Ther ; 25(11): 2585-2598, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28888469

RESUMEN

With the ability to induce rapid and efficient repair of disease-causing mutations, CRISPR/Cas9 technology is ideally suited for gene therapy approaches for recessively and dominantly inherited monogenic disorders. In this study, we have corrected a causal hotspot mutation in exon 6 of the keratin 14 gene (KRT14) that results in generalized severe epidermolysis bullosa simplex (EBS-gen sev), using a double-nicking strategy targeting intron 7, followed by homology-directed repair (HDR). Co-delivery into EBS keratinocytes of a Cas9 D10A nickase (Cas9n), a predicted single guide RNA pair specific for intron 7, and a minicircle donor vector harboring the homology donor template resulted in a recombination efficiency of >30% and correction of the mutant KRT14 allele. Phenotypic correction of EBS-gen sev keratinocytes was demonstrated by immunofluorescence analysis, revealing the absence of disease-associated K14 aggregates within the cytoplasm. We achieved a promising safety profile for the CRISPR/Cas9 double-nicking approach, with no detectable off-target activity for a set of predicted off-target genes as confirmed by next generation sequencing. In conclusion, we demonstrate a highly efficient and specific gene-editing approach for KRT14, offering a causal treatment option for EBS.


Asunto(s)
Sistemas CRISPR-Cas , Epidermólisis Ampollosa Simple/terapia , Edición Génica/métodos , Queratina-14/genética , Queratinocitos/metabolismo , Reparación del ADN por Recombinación , Secuencia de Bases , Células Cultivadas , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Epidermólisis Ampollosa Simple/genética , Epidermólisis Ampollosa Simple/metabolismo , Epidermólisis Ampollosa Simple/patología , Exones , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Intrones , Queratina-14/metabolismo , Queratinocitos/patología , Queratinocitos/trasplante , Terapia Molecular Dirigida , Mutación , Plásmidos/química , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/genética
12.
Mol Ther ; 25(11): 2573-2584, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28800953

RESUMEN

Designer nucleases allow specific and precise genomic modifications and represent versatile molecular tools for the correction of disease-associated mutations. In this study, we have exploited an ex vivo CRISPR/Cas9-mediated homology-directed repair approach for the correction of a frequent inherited mutation in exon 80 of COL7A1, which impairs type VII collagen expression, causing the severe blistering skin disease recessive dystrophic epidermolysis bullosa. Upon CRISPR/Cas9 treatment of patient-derived keratinocytes, using either the wild-type Cas9 or D10A nickase, corrected single-cell clones expressed and secreted similar levels of type VII collagen as control keratinocytes. Transplantation of skin equivalents grown from corrected keratinocytes onto immunodeficient mice showed phenotypic reversion with normal localization of type VII collagen at the basement membrane zone, compared with uncorrected keratinocytes, as well as fully stratified and differentiated skin layers without indication of blister development. Next-generation sequencing revealed on-target efficiency of up to 30%, whereas nuclease-mediated off-target site modifications at predicted genomic loci were not detected. These data demonstrate the potential of the CRISPR/Cas9 technology as a possible ex vivo treatment option for genetic skin diseases in the future.


Asunto(s)
Sistemas CRISPR-Cas , Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/terapia , Edición Génica/métodos , Queratinocitos/metabolismo , Terapia Molecular Dirigida , Animales , Secuencia de Bases , Colágeno Tipo VII/metabolismo , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/metabolismo , Epidermólisis Ampollosa Distrófica/patología , Exones , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Queratinocitos/patología , Queratinocitos/trasplante , Ratones , Ratones Desnudos , Mutación , Plásmidos/química , Plásmidos/metabolismo , Cultivo Primario de Células , Trasplante Heterólogo , Resultado del Tratamiento
14.
Sci Rep ; 7: 39094, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28045018

RESUMEN

We have analysed the splicing pattern of the human Duchenne Muscular Dystrophy (DMD) transcript in normal skeletal muscle. To achieve depth of coverage required for the analysis of this lowly expressed gene in muscle, we designed a targeted RNA-Seq procedure that combines amplification of the full-length 11.3 kb DMD cDNA sequence and 454 sequencing technology. A high and uniform coverage of the cDNA sequence was obtained that allowed to draw up a reliable inventory of the physiological alternative splicing events in the muscular DMD transcript. In contrast to previous assumptions, we evidenced that most of the 79 DMD exons are constitutively spliced in skeletal muscle. Only a limited number of 12 alternative splicing events were identified, all present at a very low level. These include previously known exon skipping events but also newly described pseudoexon inclusions and alternative 3' splice sites, of which one is the first functional NAGNAG splice site reported in the DMD gene. This study provides the first RNA-Seq-based reference of DMD splicing pattern in skeletal muscle and reports on an experimental procedure well suited to detect condition-specific differences in this low abundance transcript that may prove useful for diagnostic, research or RNA-based therapeutic applications.


Asunto(s)
Distrofina/genética , Exones , Perfilación de la Expresión Génica , Músculo Esquelético/fisiología , Empalme del ARN , Adulto , ADN Complementario/química , ADN Complementario/genética , Voluntarios Sanos , Humanos , Masculino , Análisis de Secuencia de ARN , Adulto Joven
15.
Exp Dermatol ; 26(1): 3-10, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27376675

RESUMEN

Genetic disorders affecting the skin, genodermatoses, constitute a large and heterogeneous group of diseases, for which treatment is generally limited to management of symptoms. RNA-based therapies are emerging as a powerful tool to treat genodermatoses. In this review, we discuss in detail RNA splicing modulation by antisense oligonucleotides and RNA trans-splicing, transcript replacement and genome editing by in vitro-transcribed mRNAs, and gene knockdown by small interfering RNA and antisense oligonucleotides. We present the current state of these therapeutic approaches and critically discuss their opportunities, limitations and the challenges that remain to be solved. The aim of this review was to set the stage for the development of new and better therapies to improve the lives of patients and families affected by a genodermatosis.


Asunto(s)
Terapia Genética/métodos , ARN/uso terapéutico , Enfermedades Cutáneas Genéticas/terapia , Animales , Técnicas de Silenciamiento del Gen , Humanos , Oligonucleótidos Antisentido/uso terapéutico , ARN Mensajero/uso terapéutico , Trans-Empalme
17.
Int J Mol Sci ; 17(10)2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27669223

RESUMEN

RNA trans-splicing is a promising tool for mRNA modification in a diversity of genetic disorders. In particular, the substitution of internal exons of a gene by combining 3' and 5' RNA trans-splicing seems to be an elegant way to modify especially large pre-mRNAs. Here we discuss a robust method for designing double RNA trans-splicing molecules (dRTM). We demonstrate how the technique can be implemented in an endogenous setting, using COL7A1, the gene encoding type VII collagen, as a target. An RTM screening system was developed with the aim of testing the replacement of two internal COL7A1 exons, harbouring a homozygous mutation, with the wild-type version. The most efficient RTMs from a pool of randomly generated variants were selected via our fluorescence-based screening system and adapted for use in an in vitro disease model system. Transduction of type VII collagen-deficient keratinocytes with the selected dRTM led to accurate replacement of two internal COL7A1 exons resulting in a restored wild-type RNA sequence. This is the first study demonstrating specific exon replacement by double RNA trans-splicing within an endogenous transcript in cultured cells, corroborating the utility of this technology for mRNA repair in a variety of genetic disorders.


Asunto(s)
Colágeno Tipo VII/genética , ARN Bicatenario/metabolismo , Trans-Empalme , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Secuencia de Bases , Células Cultivadas , Epidermólisis Ampollosa/metabolismo , Epidermólisis Ampollosa/patología , Exones , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Datos de Secuencia Molecular , Mutación , ARN Mensajero/química , ARN Mensajero/metabolismo
18.
Mol Ther Nucleic Acids ; 5: e287, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26928235

RESUMEN

RNA trans-splicing represents an auspicious option for the correction of genetic mutations at RNA level. Mutations within COL7A1 causing strong reduction or absence of type VII collagen are associated with the severe skin blistering disease dystrophic epidermolysis bullosa. The human COL7A1 mRNA constitutes a suitable target for this RNA therapy approach, as only a portion of the almost 9 kb transcript has to be delivered into the target cells. Here, we have proven the feasibility of 5' trans-splicing into the Col7a1 mRNA in vitro and in vivo. We designed a 5' RNA trans-splicing molecule, capable of replacing Col7a1 exons 1-15 and verified it in a fluorescence-based trans-splicing model system. Specific and efficient Col7a1 trans-splicing was confirmed in murine keratinocytes. To analyze trans-splicing in vivo, we used gene gun delivery of a minicircle expressing a FLAG-tagged 5' RNA trans-splicing molecule into the skin of wild-type mice. Histological and immunofluorescence analysis of bombarded skin sections revealed vector delivery and expression within dermis and epidermis. Furthermore, we have detected trans-spliced type VII collagen protein using FLAG-tag antibodies. In conclusion, we describe a novel in vivo nonviral RNA therapy approach to restore type VII collagen expression for causative treatment of dystrophic epidermolysis bullosa.

19.
Biomater Sci ; 4(1): 92-5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26369723

RESUMEN

A knot polymer, poly[bis(2-acryloyl)oxyethyl disulphide-co-2-(dimethylamino) ethyl methacrylate] (DSP), was synthesized, optimized and evaluated as a non-viral vector for gene transfection for skin cells, keratinocytes. With recessive dystrophic epidermolysis bullosa keratinocytes (RDEBK-TA4), the DSP exhibited high transfection efficacy with both Gaussia luciferase marker DNA and the full length COL7A1 transcript encoding the therapeutic type VII collagen protein (C7). The effective restoration of C7 in C7 null-RDEB skin cells indicates that DSP is promising for non-viral gene therapy of recessive dystrophic epidermolysis bullosa (RDEB).


Asunto(s)
Colágeno Tipo VII/química , Colágeno Tipo VII/genética , Dimetilaminas/síntesis química , Epidermólisis Ampollosa Distrófica/genética , Terapia Genética/métodos , Vectores Genéticos/química , Metacrilatos/síntesis química , Polímeros/química , Piel/química , Colágeno Tipo VII/metabolismo , ADN Complementario/genética , Dimetilaminas/química , Epidermólisis Ampollosa Distrófica/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/metabolismo , Humanos , Metacrilatos/química , Polímeros/metabolismo , Piel/metabolismo , Transfección
20.
Keio J Med ; 64(2): 21-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26050701

RESUMEN

In the past few years, substantial preclinical and experimental advances have been made in the treatment of the severe monogenic skin blistering disease epidermolysis bullosa (EB). Promising approaches have been developed in the fields of protein and cell therapies, including allogeneic stem cell transplantation; in addition, the application of gene therapy approaches has become reality. The first ex vivo gene therapy for a junctional EB (JEB) patient was performed in Italy more than 8 years ago and was shown to be effective. We have now continued this approach for an Austrian JEB patient. Further, clinical trials for a gene therapy treatment of recessive dystrophic EB are currently under way in the United States and in Europe. In this review, we aim to point out that sustainable correction of autologous keratinocytes by stable genomic integration of a therapeutic gene represents a realistic option for patients with EB.


Asunto(s)
Epidermólisis Ampollosa/terapia , Terapia Genética , Trasplante de Células Madre , Animales , Humanos , Queratinocitos/trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA