Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Eur Phys J E Soft Matter ; 42(8): 104, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31418095

RESUMEN

Current knowledge on limbs development lacks a physical description of the forces leading to formation of the limbs precursors or "buds". Earlier stages of development are driven by large scale morphogenetic movements, such as dipolar vortical flows and mechanical buckling, pulled by rings of cells. It is a natural hypothesis that similar phenomena occur during limb formation. However it is difficult to experiment on the developmental forces, in such a complex dynamic system. Here, we report a physical study of hindlimb bud formation in the chicken embryo. We use electrical stimulation to enhance the physical forces present in the tissue, prior to limb bud formation. By triggering the physical forces in a rapid and amplified pattern, we reveal the mechanism of formation of the hindlimbs: the early presumptive embryonic territory is composed of a set of rings encased like Russian dolls. Each ring constricts in an excitable pattern of force, and the limb buds are generated by folding at a pre-existing boundary between two rings, forming the dorsal and ventral ectoderms. The amniotic sac buckles at another boundary. Physiologically, the actuator of the excitable force is the tail bud pushing posteriorly along the median axis. The developmental dynamics suggests how animals may evolve by modification of the magnitude of these forces, within a common broken symmetry. On a practical level, localized electrical stimulation of morphogenetic forces opens the way to in vivo electrical engineering of tissues.


Asunto(s)
Esbozos de los Miembros/embriología , Morfogénesis , Animales , Embrión de Pollo , Elasticidad , Estimulación Eléctrica , Viscosidad
2.
Phys Rev E ; 94(2-1): 022426, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27627351

RESUMEN

We present a detailed study of the formation of the amniotic sac in the avian embryo, and a comparison with the crocodile amniotic sac. We show that the amniotic sac forms at a circular line of stiffness contrast, separating rings of cell domains. Cells align at this boundary, and this in turn orients and concentrates the tension forces. The tissue fold which forms the amniotic sac is locked exactly along this line due to the colocalization of the stiffness contrast and of the tensile force. In addition, the tensile force plays a regenerative role when the amniotic sac is cut. The fold forming the ventral side of the embryo displays the same characteristics. This work shows that amniote embryogenesis consists of a cascade of buckling events taking place at the boundaries between regions of differing mechanical properties. Hence, amniote embryogenesis relies on a simple and robust biomechanical scheme used repeatedly, and selected ancestrally.


Asunto(s)
Amnios/embriología , Fenómenos Biofísicos , Caimanes y Cocodrilos/embriología , Animales , Aves/embriología , Embrión no Mamífero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA