Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Trop Med Hyg ; 110(4): 738-740, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38471167

RESUMEN

Asymptomatic dengue virus (DENV) infections have important public health implications but are challenging to identify. We performed a cross-sectional study of reverse transcription quantitative polymerase chain reaction on pooled sera of asymptomatic individuals from the south coast of Kenya at two time periods to identify cases of asymptomatic viremia. Among 2,460 samples tested in pools of 9 or 10, we found only one positive case (0.04% incidence). Although pooling of samples has the potential to be a cost-effective and time-efficient method for asymptomatic DENV detection, mass cross-sectional pooled testing may not provide accurate data on rates of asymptomatic infection, likely owing to a decrease in the sensitivity with pooling of samples, a short period of viremia, or testing in the absence of an outbreak.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/genética , Dengue/diagnóstico , Dengue/epidemiología , Estudios Transversales , Infecciones Asintomáticas/epidemiología , Kenia/epidemiología , Viremia , Reacción en Cadena de la Polimerasa
2.
J Am Mosq Control Assoc ; 39(2): 85-95, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270926

RESUMEN

Aedes aegypti is the primary vector of dengue fever virus (DENV) worldwide. Infusions made from organic materials have been shown to act as oviposition attractants for Ae. aegypti; however, studies on locally suitable infusion materials are lacking. The current study assessed the suitability of 4 locally available materials as oviposition infusions for use in surveillance and control of Ae. aegypti in Kwale County, Kenya. Oviposition infusion preferences were assessed in laboratory, semifield, and field conditions, using 4 infusions made from banana, grass, neem, and coconut. In addition, ovitrapping in wall, grass, bush, and banana microhabitats was done in 10 houses each in urban and rural coastal households to determine suitable oviposition microhabitats. Overall, the highest oviposition responses were observed for banana infusion, followed by neem and grass infusions, which were comparable. Coconut infusion resulted in the lowest oviposition response. Although female Ae. aegypti did not show preference for any microhabitat, the oviposition activity across all the microhabitats was highly enhanced by use of the organic infusions. Banana, neem, and grass infusions could be used to attract gravid mosquitoes to oviposition sites laced with insecticide to kill eggs. Additionally, banana plantings could be important targets for integrated vector control programs.


Asunto(s)
Aedes , Dengue , Insecticidas , Femenino , Animales , Aedes/fisiología , Mosquitos Vectores , Oviposición , Kenia/epidemiología , Poaceae
3.
PLoS Negl Trop Dis ; 17(1): e0010460, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634153

RESUMEN

Rift Valley fever virus (RVFV) is a zoonotic arbovirus that has profound impact on domestic ruminants and can also be transmitted to humans via infected animal secretions. Urban areas in endemic regions across Africa have susceptible animal and human hosts, dense vector distributions, and source livestock (often from high risk locations to meet the demand for animal protein). Yet, there has never been a documented urban outbreak of RVF. To understand the likely risk of RVFV introduction to urban communities from their perspective and guide future initiatives, we conducted focus group discussions with slaughterhouse workers, slaughterhouse animal product traders, and livestock owners in Kisumu City and Ukunda Town in Kenya. For added perspective and data triangulation, in-depth interviews were conducted one-on-one with meat inspector veterinarians from selected slaughterhouses. A theoretical framework relevant to introduction, transmission, and potential persistence of RVF in urban areas is presented here. Urban livestock were primarily mentioned as business opportunities, but also had personal sentiment. In addition to slaughtering risks, perceived risk factors included consumption of fresh milk. High risk groups' knowledge and experience with RVFV and other zoonotic diseases impacted their consideration of personal risk, with consensus towards lower risk in the urban setting compared to rural areas as determination of health risk was said to primarily rely on hygiene practices rather than the slaughtering process. Groups relied heavily on veterinarians to confirm animal health and meat safety, yet veterinarians reported difficulty in accessing RVFV diagnostics. We also identified vulnerable public health regulations including corruption in meat certification outside of the slaughterhouse system, and blood collected during slaughter being used for food and medicine, which could provide a means for direct RVFV community transmission. These factors, when compounded by diverse urban vector breeding habitats and dense human and animal populations, could create suitable conditions for RVFV to arrive an urban center via a viremic imported animal, transmit to locally owned animals and humans, and potentially adapt to secondary vectors and persist in the urban setting. This explorative qualitative study proposes risk pathways and provides initial insight towards determining how urban areas could adapt control measures and plan future initiatives to better understand urban RVF potential.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Humanos , Kenia/epidemiología , Ganado/virología , Carne , Fiebre del Valle del Rift/prevención & control , Fiebre del Valle del Rift/transmisión , Rumiantes/virología , Zoonosis/prevención & control , Zoonosis/transmisión , Factores de Riesgo , Población Urbana , Mataderos/legislación & jurisprudencia , Mataderos/normas , Inocuidad de los Alimentos
4.
Am J Trop Med Hyg ; 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35640647

RESUMEN

This study examined whether Aedes aegypti extends its human blood seeking activity into night hours. Human landing catches (HLC) were conducted hourly from early morning (04:30) to late evening (21:30) in urban and rural sites in Kisumu County in western Kenya, and in Kwale County at the coast. Out of 842 female Ae. aegypti mosquitoes, 71 (8.5%) were collected at night (nocturnal), 151 (17.9%) at twilight (crepuscular), and 620 (73.6%) during the day (diurnal). Three-fold and significantly more Ae. aegypti female mosquitoes were collected during the twilight (crepuscular) hours than night (nocturnal) hours. Significantly more Ae. aegypti female mosquitoes were collected during daytime (diurnal) than night time (nocturnal). In general, the number of mosquitoes collected reduced as darkness increased. Extended time into the night to seek for blood meals enhances chances for Ae. aegypti to contact humans and transmit arboviruses diseases.

5.
PLOS Glob Public Health ; 2(7): e0000505, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962424

RESUMEN

The Rift Valley fever virus (RVFV) is a zoonotic arbovirus that can also transmit directly to humans from livestock. Previous studies have shown consumption of sick animal products are risk factors for RVFV infection, but it is difficult to disentangle those risk factors from other livestock rearing activities. Urban areas have an increased demand for animal source foods, different vector distributions, and various arboviruses are understood to establish localized urban transmission cycles. Thus far, RVFV is an unevaluated public health risk in urban areas within endemic regions. We tested participants in our ongoing urban cohort study on dengue (DENV) and chikungunya (CHIKV) virus for RVFV exposure and found 1.6% (57/3,560) of individuals in two urban areas of Kenya had anti-RVFV IgG antibodies. 88% (50/57) of RVFV exposed participants also had antibodies to DENV, CHIKV, or both. Although livestock ownership was very low in urban study sites, RVFV exposure was overall significantly associated with seeing goats around the homestead (OR = 2.34 (CI 95%: 1.18-4.69, p = 0.02) and in Kisumu, RVFV exposure was associated with consumption of raw milk (OR = 6.28 (CI 95%: 0.94-25.21, p = 0.02). In addition, lack of piped water and use of small jugs (15-20 liters) for water was associated with a higher risk of RVFV exposure (OR = 5.36 (CI 95%: 1.23-16.44, p = 0.01) and this may contribute to interepidemic vector-borne maintenance of RVFV. We also investigated perception towards human vaccination for RVFV and identified high acceptance (91% (97/105) at our study sites. This study provides baseline evidence to guide future studies investigating the urban potential of RVFV and highlights the unexplored role of animal products in continued spread of RVFV.

6.
PLoS One ; 12(12): e0189971, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29261766

RESUMEN

Aedes aegypti is the main vector for yellow fever, dengue, chikungunya and Zika viruses. Recent outbreaks of dengue and chikungunya have been reported in Kenya. Presence and abundance of this vector is associated with the risk for the occurrence and transmission of these diseases. This study aimed to characterize the presence and abundance of Ae. aegypti adult mosquitoes from rural and urban sites in western and coastal regions of Kenya. Presence and abundance of Ae. aegypti adult mosquitoes were determined indoors and outdoors in two western (urban Kisumu and rural Chulaimbo) and two coastal (urban Ukunda and rural Msambweni) sites in Kenya. Sampling was performed using quarterly human landing catches, monthly Prokopack automated aspirators and monthly Biogents-sentinel traps. A total of 2,229 adult Ae. aegypti mosquitoes were collected: 785 (35.2%) by human landing catches, 459 (20.6%) by Prokopack aspiration and 985 (44.2%) by Biogents-sentinel traps. About three times as many Ae. aegypti mosquitoes were collected in urban than rural sites (1,650 versus 579). Comparable numbers were collected in western (1,196) and coastal (1,033) sites. Over 80% were collected outdoors through human landing catches and Prokopack aspiration. The probability of collecting Ae. aegypti mosquitoes by human landing catches was significantly higher in the afternoon than morning hours (P<0.001), outdoors than indoors (P<0.001) and in urban than rural sites (P = 0.008). Significantly more Ae. aegypti mosquitoes were collected using Prokopack aspiration outdoors than indoors (P<0.001) and in urban than rural areas (P<0.001). Significantly more mosquitoes were collected using Biogents-sentinel traps in urban than rural areas (P = 0.008) and in western than coastal sites (P = 0.006). The probability of exposure to Ae. aegypti bites was highest in urban areas, outdoors and in the afternoon hours. These characteristics have major implications for the possible transmission of arboviral diseases and for the planning of surveillance and control programs.


Asunto(s)
Aedes/fisiología , Ecosistema , Población Rural , Población Urbana , Envejecimiento , Animales , Automatización , Intervalos de Confianza , Geografía , Humanos , Kenia/epidemiología , Control de Mosquitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA