Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Virus Res ; 286: 198081, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663481

RESUMEN

Maize is the most important food crop in Kenya accounting for more than 51 % of all staples grown in the country. Out of Kenya's 5.3 million ha total crops area, more than 2.1 million ha is occupied by maize which translates to 40 % of all crops area. However, with the emergence of maize lethal necrosis (MLN) disease in 2011, the average yields plummeted to all-time lows with severely affected counties recording 90-100% yield loss in 2013 and 2014. The disease is mainly caused by Maize chlorotic mottle virus (MCMV) in combination with Sugarcane mosaic virus (SCMV) or other potyviruses. In this study, a country-wide survey was carried out to assess the MLN causing viruses in Kenya, their distribution, genetic diversity, and recombination. The causative viruses of MLN were determined by RT-PCR using virus-specific primers and DAS-ELISA. Next-generation sequencing (NGS) data was generated, viral sequences identified, genetic diversity of MLN viruses was determined, and recombination was evaluated. MCMV and SCMV were detected in all the maize growing regions at varying levels of incidence, and severity while MaYMV, a polerovirus was detected in some samples through NGS. However, there were some samples in this study where only MCMV was detected with severe MLN symptoms. SCMV Sequences were highly diverse while MCMV sequences exhibited low variability. Potential recombination events were detected only in SCMV explaining the elevated level of diversity and associated risk of this virus in Kenya and the eastern Africa region.


Asunto(s)
Variación Genética , Genoma Viral , Enfermedades de las Plantas/virología , Potyvirus/genética , Tombusviridae/genética , Zea mays/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Kenia , Potyvirus/clasificación , Potyvirus/aislamiento & purificación , Recombinación Genética , Tombusviridae/clasificación , Tombusviridae/aislamiento & purificación
2.
Virus Res ; 282: 197943, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32205142

RESUMEN

Maize lethal necrosis (MLN), a complex viral disease, emerged as a serious threat to maize production and the livelihoods of smallholders in eastern Africa since 2011, primarily due to the introduction of maize chlorotic mottle virus (MCMV). The International Maize and Wheat Improvement Center (CIMMYT), in close partnership with national and international partners, implemented a multi-disciplinary and multi-institutional strategy to curb the spread of MLN in sub-Saharan Africa, and mitigate the impact of the disease. The strategy revolved around a) intensive germplasm screening and fast-tracked development and deployment of MLN-tolerant/resistant maize hybrids in Africa-adapted genetic backgrounds; b) optimizing the diagnostic protocols for MLN-causing viruses, especially MCMV, and capacity building of relevant public and private sector institutions on MLN diagnostics and management; c) MLN monitoring and surveillance across sub-Saharan Africa in collaboration with national plant protection organizations (NPPOs); d) partnership with the private seed sector for production and exchange of MLN pathogen-free commercial maize seed; and e) awareness creation among relevant stakeholders about MLN management, including engagement with policy makers. The review concludes by highlighting the need to keep continuous vigil against MLN-causing viruses, and preventing any further spread of the disease to the major maize-growing countries that have not yet reported MLN in sub-Saharan Africa.


Asunto(s)
Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Tombusviridae/patogenicidad , Zea mays/virología , África del Sur del Sahara , Necrosis , Semillas/virología
3.
Physiol Mol Plant Pathol ; 105: 77-87, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31007376

RESUMEN

Here, we report a method to clean cassava plants from viral infections that cause cassava mosaic and brown streak diseases in Africa. Infected plants of resistant or tolerant varieties from Malawi, Mozambique, Kenya, Tanzania and Uganda were cleaned in the UK using a combination of tissue culture, chemotherapy and thermotherapy. In the first cycle of our virus-indexing procedure, we successfully cleaned 27 of the 31 varieties (87%), and after an additional three cleaning cycles, all plants were virus-free. Virus-free tissue-cultured plants were shipped back to Africa for distribution to farmers. This first cross-boundary effort provides important lessons for mitigating the two-major cassava viral diseases.

4.
Food Secur ; 10: 351-368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33365104

RESUMEN

Cassava varieties resistant to cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are needed for the food and income security of the rural poor in eastern and southern Africa (ESA). The International Institute of Tropical Agriculture led five national cassava breeding programs (Malawi, Mozambique, Kenya, Tanzania and Uganda) in virus-cleaning and exchanging elite cassava germplasm resistant to both diseases. This paper documents the experiences and lessons learned from the process. Thirty-one clones (25 elite, two standard and four national) were submitted by the five breeding programs to the Natural Resources Institute and Kenya Plant Health Inspectorate Services for virus cleaning and indexing. Subsequently, ca 75 invitro virus-indexed plantlets per clone were sent to Genetic Technologies International Limited (GTIL), a private tissue culture (TC) lab in Kenya, and micro-propagated to produce ≥1500 plantlets. After fulfilling all the formal procedures of germplasm exchange between countries ≥300 plantlets per clone were sent to each partner country. National check clones susceptible to CMD/CBSD were sent only to their countries of origin. In each country, the in-vitro plantlets were acclimatized under screen house conditions and transferred to clean isolated sites for field multiplication. All the clones were cleaned of the viruses, except Tomo. The cleaning process was slow for F19-NL, NASE1, and Kibandameno and TC micro-propagation at GTIL was less efficient for Pwani, Tajirika, NASE1, and Okhumelela than for the other clones. Difficulties in cleaning recalcitrant clones affected the timeline for establishing the multi-site evaluation trials in target countries. The initiative is the one of the kind to successfully clean and exchange elite germplasm as a joint action to combat CBSD in ESA. Adequate preparation in terms of infrastructure and personnel are critical to successfully receiving and adapting the indexed in-vitro plants as new germplasm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA