Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Cell Biol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969762

RESUMEN

Transcription factors (TFs) control specificity and activity of gene transcription, but whether a relationship between these two features exists is unclear. Here we provide evidence for an evolutionary trade-off between the activity and specificity in human TFs encoded as submaximal dispersion of aromatic residues in their intrinsically disordered protein regions. We identified approximately 500 human TFs that encode short periodic blocks of aromatic residues in their intrinsically disordered regions, resembling imperfect prion-like sequences. Mutation of periodic aromatic residues reduced transcriptional activity, whereas increasing the aromatic dispersion of multiple human TFs enhanced transcriptional activity and reprogramming efficiency, promoted liquid-liquid phase separation in vitro and more promiscuous DNA binding in cells. Together with recent work on enhancer elements, these results suggest an important evolutionary role of suboptimal features in transcriptional control. We propose that rational engineering of amino acid features that alter phase separation may be a strategy to optimize TF-dependent processes, including cellular reprogramming.

2.
Cell Rep ; 42(8): 112897, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516962

RESUMEN

Cell identity is orchestrated through an interplay between transcription factor (TF) action and genome architecture. The mechanisms used by TFs to shape three-dimensional (3D) genome organization remain incompletely understood. Here we present evidence that the lineage-instructive TF CEBPA drives extensive chromatin compartment switching and promotes the formation of long-range chromatin hubs during induced B cell-to-macrophage transdifferentiation. Mechanistically, we find that the intrinsically disordered region (IDR) of CEBPA undergoes in vitro phase separation (PS) dependent on aromatic residues. Both overexpressing B cells and native CEBPA-expressing cell types such as primary granulocyte-macrophage progenitors, liver cells, and trophectoderm cells reveal nuclear CEBPA foci and long-range 3D chromatin hubs at CEBPA-bound regions. In short, we show that CEBPA can undergo PS through its IDR, which may underlie in vivo foci formation and suggest a potential role of PS in regulating CEBPA function.


Asunto(s)
Cromatina , Regulación de la Expresión Génica , Núcleo Celular , Macrófagos
3.
Nat Commun ; 14(1): 3936, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402719

RESUMEN

Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.


Asunto(s)
Neuroblastoma , ARN Circular , Niño , Humanos , ARN Circular/genética , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Línea Celular Tumoral , ARN/genética , ARN/metabolismo , Neuroblastoma/metabolismo , Regulación Neoplásica de la Expresión Génica
4.
Nat Genet ; 54(8): 1238-1247, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35864192

RESUMEN

Most endogenous retroviruses (ERVs) in mammals are incapable of retrotransposition; therefore, why ERV derepression is associated with lethality during early development has been a mystery. Here, we report that rapid and selective degradation of the heterochromatin adapter protein TRIM28 triggers dissociation of transcriptional condensates from loci encoding super-enhancer (SE)-driven pluripotency genes and their association with transcribed ERV loci in murine embryonic stem cells. Knockdown of ERV RNAs or forced expression of SE-enriched transcription factors rescued condensate localization at SEs in TRIM28-degraded cells. In a biochemical reconstitution system, ERV RNA facilitated partitioning of RNA polymerase II and the Mediator coactivator into phase-separated droplets. In TRIM28 knockout mouse embryos, single-cell RNA-seq analysis revealed specific depletion of pluripotent lineages. We propose that coding and noncoding nascent RNAs, including those produced by retrotransposons, may facilitate 'hijacking' of transcriptional condensates in various developmental and disease contexts.


Asunto(s)
Retrovirus Endógenos , Animales , Células Madre Embrionarias , Retrovirus Endógenos/genética , Heterocromatina , Mamíferos/genética , Ratones , Cuerpos Nucleares , Retroelementos
5.
Cancers (Basel) ; 12(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244760

RESUMEN

Malfunctions of circadian clock trigger abnormal cellular processes and influence tumorigenesis. Using an in vitro and in vivo xenograft model, we show that circadian clock disruption via the downregulation of the core-clock genes BMAL1, PER2, and NR1D1 impacts the circadian phenotype of MYC, WEE1, and TP53, and affects proliferation, apoptosis, and cell migration. In particular, both our in vitro and in vivo results suggest an impairment of cell motility and a reduction in micrometastasis formation upon knockdown of NR1D1, accompanied by altered expression levels of SNAI1 and CD44. Interestingly we show that differential proliferation and reduced tumour growth in vivo may be due to the additional influence of the host-clock and/or to the 3D tumour architecture. Our results raise new questions concerning host-tumour interaction and show that core-clock genes are involved in key cancer properties, including the regulation of cell migration and invasion by NR1D1 in zebrafish xenografts.

6.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052302

RESUMEN

Non-coding RNAs (ncRNAs) are essential regulators of gene expression. In recent years, it has become more and more evident that the different classes of ncRNAs, such as micro RNAs, long non-coding RNAs and circular RNAs are organized in tightly controlled networks. It has been suggested that deregulation of these networks can lead to disease. Several studies show a contribution of these so-called competing-endogenous RNA networks in various cancer entities. In this review, we highlight the involvement of ncRNA networks in anaplastic-large cell lymphoma (ALCL), a T-cell neoplasia. A majority of ALCL cases harbor the molecular hallmark of this disease, a fusion of the anaplastic lymphoma kinase (ALK) gene with the nucleophosmin (NPM, NPM1) gene leading to a permanently active kinase that promotes the malignant phenotype. We have focused especially on ncRNAs that are regulated by the NPM-ALK fusion gene and illustrate how their deregulation contributes to the pathogenesis of ALCL. Lastly, we summarize the findings and point out potential therapeutic implications.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Redes Reguladoras de Genes , Linfoma Anaplásico de Células Grandes/genética , ARN no Traducido/genética , Animales , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma Anaplásico de Células Grandes/metabolismo , Nucleofosmina , ARN no Traducido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA