Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1324538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584952

RESUMEN

Phosphorus fertilization imposes critical limitations on crop productivity and soil health. The aim of the present work is to explore the potential of two phosphate solubilizing bacteria (PSB) species in phosphorus supplementation of canola (Brassica napus L.). Out of 38 bacterial isolates obtained from nine medicinal plants, two bacterial strains (20P and 28P) were proved as the most potent for the in-vitro tricalcium phosphate solubilization test. These isolates verified their activity toward different enzymes as nitrogenase and alkaline phosphatase. Also, 20P and 28P gave a high amount of indole-3-acetic acid, 34.16 µg/ml and 35.20 µg/ml, respectively, and were positive for siderophores production as they detected moderate affinity for iron chelation. Molecular identification confirmed that strain 20P was Bacillus vallismortis and strain 28P was Bacillus tequilensis. A pot experiment was conducted to study the effect of four different phosphorus concentrations (0%, 50%, 75%, and 100% P) each alone and/or in combination with B. vallismortis, B. tequilensis, or both bacterial isolates on the vegetative growth and some physiological parameters of canola. The combined treatment of 50% phosphorus + (B. vallismortis + B. tequilensis) was generally the most effective with respect to shoot height, shoot dry mass, leaf area, photosynthetic pigment fractions, total sugar content, and accumulated NPK content. In contrast, the rhizosphere pH reached the minimum value under the same treatment. These findings highlighted the potential use of PSB (B. vallismortis and B. tequilensis) along with phosphorus fertilization as a safe sustainable tactic.

2.
Front Plant Sci ; 14: 1136325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925755

RESUMEN

The potential of macroalgae as biostimulants in agriculture was proved worthy. Vicia faba and Helianthus annuus are socioeconomic crops owing to their increasing demand worldwide. In this work, we investigated the energetic role of seed presoaking and irrigation by the brown seaweed, Sargassum polycystum aqueous extract (SAE) on certain germination and growth traits, photosynthetic pigments, carbohydrates, phenolics, flavonoids, and the total antioxidant activity. Compared to the control plants, our consequences revealed that seeds that received the SAE improved all the germination and growth criteria for both crop plants. Furthermore, the SAE significantly increased the carotenoids, total photosynthetic pigments, and total carbohydrates by (14%, 7%, and 41%) for V. faba and (17%, 17%, and 38%) for H. annuus, respectively. Phenolics and flavonoids were significantly induced in Vicia but slightly promoted in Helianthu plants, whereas the total antioxidant activity in both crops non significantly elevated. Even though The NPK contents were significantly stimulated by the SAE in Vicia plants, the effect was different in Helianthus, where only nitrogen content was significantly enhanced, whereas phosphorus and potassium showed little enhancement. Thus, the SAE treatment is one of the superlative sustainable strategies for food, feed, and as excellent plant conditioner.

3.
BMC Plant Biol ; 22(1): 431, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36076165

RESUMEN

BACKGROUND: Since the root nodules formation is regulated by specific and complex interactions of legume and rhizobial genes, there are still too many questions to be answered about the role of the genes involved in the regulation of the nodulation signaling pathway. RESULTS: The genetic and biological roles of the isoflavone-7-O-beta-glucoside 6″-O-malonyltransferase gene GsIMaT2 from wild soybean (Glycine soja) in the regulation of nodule and root growth in soybean (Glycine max) were examined in this work. The effect of overexpressing GsIMaT2 from G. soja on the soybean nodulation signaling system and strigolactone production was investigated. We discovered that the GsIMaT2 increased nodule numbers, fresh nodule weight, root weight, and root length by boosting strigolactone formation. Furthermore, we examined the isoflavone concentration of transgenic G. max hairy roots 10 and 20 days after rhizobial inoculation. Malonyldaidzin, malonylgenistin, daidzein, and glycitein levels were considerably higher in GsMaT2-OE hairy roots after 10- and 20-days of Bradyrhizobium japonicum infection compared to the control. These findings suggest that isoflavones and their biosynthetic genes play unique functions in the nodulation signaling system in G. max. CONCLUSIONS: Finally, our results indicate the potential effects of the GsIMaT2 gene on soybean root growth and nodulation. This study provides novel insights for understanding the epistatic relationship between isoflavones, root development, and nodulation in soybean. HIGHLIGHTS: * Cloning and Characterization of 7-O-beta-glucoside 6″-O-malonyltransferase (GsIMaT2) gene from wild soybean (G. soja). * The role of GsIMaT2 gene in the regulation of root nodule development. *Overexpression of GsMaT2 gene increases the accumulation of isoflavonoid in transgenic soybean hairy roots. * This gene could be used for metabolic engineering of useful isoflavonoid production.


Asunto(s)
Isoflavonas , Rhizobium , Regulación de la Expresión Génica de las Plantas , Glucósidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/metabolismo , Glycine max/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA