Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Mater ; : e2307508, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728063

RESUMEN

Halide perovskites are excellent candidate materials for use in solar cell, LED, and detector devices, in part because their composition can be tuned to achieve ideal optoelectronic properties. Empirical efficiency optimization has led the field toward compositions rich in FA (formamidinium) on the A-site and I on the X-site, with additional small amounts of MA (methylammonium) or Cs A-site cations and Br X-site anions. However, it is not clear how and why the specific compositions of alloyed, that is, mixed component, halide perovskites relate to photo-stability of the materials. Here, this work combines synchrotron grazing incidence wide-angle X-ray scattering, photoluminescence, high-resolution scanning electron diffraction measurements and theoretical modelling to reveal the links between material structure and photostability. Namely, this work finds that increased octahedral titling leads to improved photo-stability that is correlated with lower densities of performance-harming hexagonal polytype impurities. These results uncover the structural signatures underpinning photo-stability and can therefore be used to make targeted changes to halide perovskites, bettering the commercial prospects of technologies based on these materials.

2.
Nat Mater ; 22(8): 977-984, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37308547

RESUMEN

Photoinduced spin-charge interconversion in semiconductors with spin-orbit coupling could provide a route to optically addressable spintronics without the use of external magnetic fields. However, in structurally disordered polycrystalline semiconductors, which are being widely explored for device applications, the presence and role of spin-associated charge currents remains unclear. Here, using femtosecond circular-polarization-resolved pump-probe microscopy on polycrystalline halide perovskite thin films, we observe the photoinduced ultrafast formation of spin domains on the micrometre scale formed through lateral spin currents. Micrometre-scale variations in the intensity of optical second-harmonic generation and vertical piezoresponse suggest that the spin-domain formation is driven by the presence of strong local inversion symmetry breaking via structural disorder. We propose that this leads to spatially varying Rashba-like spin textures that drive spin-momentum-locked currents, leading to local spin accumulation. Ultrafast spin-domain formation in polycrystalline halide perovskite films provides an optically addressable platform for nanoscale spin-device physics.

3.
Nature ; 607(7918): 294-300, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609624

RESUMEN

Understanding the nanoscopic chemical and structural changes that drive instabilities in emerging energy materials is essential for mitigating device degradation. The power conversion efficiency of halide perovskite photovoltaic devices has reached 25.7 per cent in single-junction and 29.8 per cent in tandem perovskite/silicon cells1,2, yet retaining such performance under continuous operation has remained elusive3. Here we develop a multimodal microscopy toolkit to reveal that in leading formamidinium-rich perovskite absorbers, nanoscale phase impurities, including hexagonal polytype and lead iodide inclusions, are not only traps for photoexcited carriers, which themselves reduce performance4,5, but also, through the same trapping process, are sites at which photochemical degradation of the absorber layer is seeded. We visualize illumination-induced structural changes at phase impurities associated with trap clusters, revealing that even trace amounts of these phases, otherwise undetected with bulk measurements, compromise device longevity. The type and distribution of these unwanted phase inclusions depends on the film composition and processing, with the presence of polytypes being most detrimental for film photo-stability. Importantly, we reveal that both performance losses and intrinsic degradation processes can be mitigated by modulating these defective phase impurities, and demonstrate that this requires careful tuning of local structural and chemical properties. This multimodal workflow to correlate the nanoscopic landscape of beam-sensitive energy materials will be applicable to a wide range of semiconductors for which a local picture of performance and operational stability has yet to be established.

4.
Science ; 374(6575): 1598-1605, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34941391

RESUMEN

Efforts to stabilize photoactive formamidinium (FA)­based halide perovskites for perovskite photovoltaics have focused on the growth of cubic formamidinium lead iodide (α-FAPbI3) phases by empirically alloying with cesium, methylammonium (MA) cations, or both. We show that such stabilized FA-rich perovskites are noncubic and exhibit ~2° octahedral tilting at room temperature. This tilting, resolvable only with the use of local nanostructure characterization techniques, imparts phase stability by frustrating transitions from photoactive to hexagonal phases. Although the bulk phase appears stable when examined macroscopically, heterogeneous cation distributions allow microscopically unstable regions to form; we found that these transitioned to hexagonal polytypes, leading to local trap-assisted performance losses and photoinstabilities. Using surface-bound ethylenediaminetetraacetic acid, we engineered an octahedral tilt into pure α-FAPbI3 thin films without any cation alloying. The templated photoactive FAPbI3 film was extremely stable against thermal, environmental, and light stressors.

5.
Adv Mater ; 33(32): e2102462, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34219285

RESUMEN

Hybrid-perovskite-based optoelectronic devices are demonstrating unprecedented growth in performance, and defect passivation approaches are highly promising routes to further improve properties. Here, the effect of the molecular ion BF4 - , introduced via methylammonium tetrafluoroborate (MABF4 ) in a surface treatment for MAPbI3 perovskite, is reported. Optical spectroscopy characterization shows that the introduction of tetrafluoroborate leads to reduced non-radiative charge-carrier recombination with a reduction in first-order recombination rate from 6.5 × 106 to 2.5 × 105 s-1 in BF4 - -treated samples, and a consequent increase in photoluminescence quantum yield by an order of magnitude (from 0.5 to 10.4%). 19 F, 11 B, and 14 N solid-state NMR is used to elucidate the atomic-level mechanism of the BF4 - additive-induced improvements, revealing that the BF4 - acts as a scavenger of excess MAI by forming MAI-MABF4 cocrystals. This shifts the equilibrium of iodide concentration in the perovskite phase, thereby reducing the concentration of interstitial iodide defects that act as deep traps and non-radiative recombination centers. These collective results allow us to elucidate the microscopic mechanism of action of BF4 - .

6.
Nat Commun ; 11(1): 3378, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632144

RESUMEN

Perovskite light-emitting diodes (PeLEDs) based on three-dimensional (3D) polycrystalline perovskites suffer from ion migration, which causes overshoot of luminance over time during operation and reduces its operational lifetime. Here, we demonstrate 3D/2D hybrid PeLEDs with extremely reduced luminance overshoot and 21 times longer operational lifetime than 3D PeLEDs. The luminance overshoot ratio of 3D/2D hybrid PeLED is only 7.4% which is greatly lower than that of 3D PeLED (150.4%). The 3D/2D hybrid perovskite is obtained by adding a small amount of neutral benzylamine to methylammonium lead bromide, which induces a proton transfer from methylammonium to benzylamine and enables crystallization of 2D perovskite without destroying the 3D phase. Benzylammonium in the perovskite lattice suppresses formation of deep-trap states and ion migration, thereby enhances both operating stability and luminous efficiency based on its retardation effect in reorientation.

7.
ChemSusChem ; 10(19): 3722-3739, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28804965

RESUMEN

Over the past few years the organic-inorganic hybrid perovskite systems have emerged as a promising class of materials for photovoltaic and electroluminescent thin-film device applications, in view of their unique set of tunable optoelectronic properties. Importantly, these materials can be easily solution-processed at low temperatures and as such are amenable to facile molecular engineering. Thus, a variety of low-dimensional forms and quantum structures of these materials can be obtained through strategic synthetic manipulations through small molecule incorporation or molecular ion doping. In this Minireview, we specifically focus on these approaches and outline the possibilities of utilizing these for enhanced functionalities and newer application domains.


Asunto(s)
Compuestos de Calcio/química , Óxidos/química , Titanio/química , Técnicas de Química Sintética , Puntos Cuánticos/química
8.
Chempluschem ; 82(2): 280-286, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31961550

RESUMEN

Three new D-A-π-A metal-free organic dyes based on phenothiazine as a donor (D) and non-conjugated π-spacer were designed and synthesized. The incorporation of different 'internal acceptors' (electron traps) such as benzothiadiazole (BTD), benzotriazole (BTA), and pyridine were shown to allow systematic tuning of the energy levels and the photophysical properties. The AI-1 dye showed lower electronic disorder compared with the other two dyes. The efficiencies achieved with AI-1, AI-2, and AI-3 dyes were 8.5 % (Jsc =15.42 mA cm-2 , Voc =0.78 V, FF=68 %), 7 % (Jsc =12.8 mA cm-2 , Voc =0.78 V, FF=68 %) and 6.7 % (Jsc =11.57 mA cm-2 , Voc =0.82 V, FF=68.26 %), respectively. The incorporation of non-conjugated phenothiazine as a π-spacer in D-A-π-A dyes showed remarkable enhancement in the photovoltaic performance of dye-sensitized solar cell (DSSC) devices. The sealed DSSC devices with iodide/tri-iodide (I- /I3 - )-based liquid electrolyte showed promising stability under ambient conditions.

9.
J Phys Chem Lett ; 7(22): 4757-4762, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27934202

RESUMEN

We report the synthesis of fully molecular ion (BF4-)-based organic-inorganic hybrid perovskite CH3NH3Pb(BF4)3, which is a wide band gap semiconductor, and the same can be easily tuned toward the visible by the incorporation of bromide or iodide ions in the crystal framework simply by changing lead precursors. We have also successfully transformed the distorted 3D molecular-ion-induced perovskite to 2D (C4H9NH3)2Pb(BF4)4, (C4H9NH3)2PbBr(4-x)(BF4)x, and (C4H9NH3)2PbI(4-x)(BF4)x perovskites that exhibit the optical absorption over the UV to visible region. The thin films of molecular-ion-containing 2D perovskites with Br- and I- anions show blue and green luminescence, respectively, under UV illumination.

10.
ACS Appl Mater Interfaces ; 8(1): 854-61, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26690942

RESUMEN

Perovskites based on organometal lead halides have attracted great deal of scientific attention recently in the context of solar cells and optoelectronic devices due to their unique and tunable electronic and optical properties. Herein, we show that the use of electrospray technique in conjunction with the antisolvent-solvent extraction leads to novel low-dimensional quantum structures (especially 2-D nanosheets) of CH3NH3PbI3- and CH3NH3PbBr3-based layered perovskites with unusual luminescence properties. We also show that the optical bandgaps and emission characteristics of these colloidal nanomaterials can be tuned over a broad range of visible spectral region by compositional tailoring of mixed-halide (I- and Br-based) perovskites.

11.
Chem Commun (Camb) ; 50(68): 9741-4, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25020198

RESUMEN

A molecular ion (BF4(-)) substituted hybrid perovskite CH3NH3PbI(3-x)(BF4)x is synthesized. The substituted perovskite shows significant enhancement in electrical conductivity at low frequencies and improved photoresponse under AM1.5 illumination as compared to the perovskite (CH3NH3PbI3).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA