Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cerebellum ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115382

RESUMEN

Ataxia and impaired motor learning are both fundamental features in diseases affecting the cerebellum. However, it remains unclarified whether motor learning is impaired only when ataxia clearly manifests, nor it is known whether the progression of ataxia, the speed of which often varies among patients with the same disease, can be monitored by examining motor learning. We evaluated motor learning and ataxia at intervals of several months in 40 patients with degenerative conditions [i.e., multiple system atrophy (MSA), Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3), SCA6, and SCA31]. Motor learning was quantified as the adaptability index (AI) in the prism adaptation task and ataxia was scored using the Scale for the Assessment and Rating of Ataxia (SARA). We found that AI decreased most markedly in both MSA-C and MSA-P, moderately in MJD, and mildly in SCA6 and SCA31. Overall, the AI decrease occurred more rapidly than the SARA score increase. Interestingly, AIs remained normal in purely parkinsonian MSA-P patients (n = 4), but they dropped into the ataxia range when these patients started to show ataxia. The decrease in AI during follow-up (dAI/dt) was significant in patients with SARA scores < 10.5 compared with patients with SARA scores ≥ 10.5, indicating that AI is particularly useful for diagnosing the earlier phase of cerebellar degeneration. We conclude that AI is a useful marker for progressions of cerebellar diseases, and that evaluating the motor learning of patients can be particularly valuable for detecting cerebellar impairment, which is often masked by parkinsonisms and other signs.

2.
iScience ; 25(7): 104604, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35789858

RESUMEN

SLITRK2 encodes a transmembrane protein that modulates neurite outgrowth and synaptic activities and is implicated in bipolar disorder. Here, we addressed its physiological roles in mice. In the brain, the Slitrk2 protein was strongly detected in the hippocampus, vestibulocerebellum, and precerebellar nuclei-the vestibular-cerebellar-brainstem neural network including pontine gray and tegmental reticular nucleus. Slitrk2 knockout (KO) mice exhibited increased locomotor activity in novel environments, antidepressant-like behaviors, enhanced vestibular function, and increased plasticity at mossy fiber-CA3 synapses with reduced sensitivity to serotonin. A serotonin metabolite was increased in the hippocampus and amygdala, and serotonergic neurons in the raphe nuclei were decreased in Slitrk2 KO mice. When KO mice were treated with methylphenidate, lithium, or fluoxetine, the mood stabilizer lithium showed a genotype-dependent effect. Taken together, Slitrk2 deficiency causes aberrant neural network activity, synaptic integrity, vestibular function, and serotonergic function, providing molecular-neurophysiological insight into the brain dysregulation in bipolar disorders.

3.
Sci Rep ; 12(1): 11933, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831353

RESUMEN

Protocadherin 9 (Pcdh9) is a member of the cadherin superfamily and is uniquely expressed in the vestibular and limbic systems; however, its physiological role remains unclear. Here, we studied the expression of Pcdh9 in the limbic system and phenotypes of Pcdh9-knock-out mice (Pcdh9 KO mice). Pcdh9 mRNA was expressed in the fear extinction neurons that express protein phosphatase 1 regulatory subunit 1 B (Ppp1r1b) in the posterior part of the basolateral amygdala (pBLA), as well as in the Cornu Ammonis (CA) and Dentate Gyrus (DG) neurons of the hippocampus. We show that the Pcdh9 protein was often localised at synapses. Phenotypic analysis of Pcdh9 KO mice revealed no apparent morphological abnormalities in the pBLA but a decrease in the spine number of CA neurons. Further, the Pcdh9 KO mice were related to features such as the abnormal optokinetic response, less approach to novel objects, and reduced fear extinction during recovery from the fear. These results suggest that Pcdh9 is involved in eliciting positive emotional behaviours, possibly via fear extinction neurons in the pBLA and/or synaptic activity in the hippocampal neurons, and normal optokinetic eye movement in brainstem optokinetic system-related neurons.


Asunto(s)
Extinción Psicológica , Miedo , Animales , Ratones , Extinción Psicológica/fisiología , Miedo/fisiología , Hipocampo , Neuronas , Protocadherinas
5.
Neuroscience ; 462: 191-204, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32710914

RESUMEN

Masao Ito proposed a cerebellar learning hypothesis with Marr and Albus in the early 1970s. He suggested that cerebellar flocculus (FL) Purkinje cells (PCs), which directly inhibit the vestibular nuclear neurons driving extraocular muscle motor neurons, adaptively control the horizontal vestibulo-ocular reflex (HVOR) through the modification of mossy and parallel fiber-mediated vestibular responsiveness by visual climbing fiber (CF) inputs. Later, it was suggested that the same FL PCs adaptively control the horizontal optokinetic response (HOKR) in the same manner through the modification of optokinetic responsiveness in rodents and rabbits. In 1982, Ito and his colleagues discovered the plasticity of long-term depression (LTD) at parallel fiber (PF)-PC synapses after conjunctive stimulation of mossy or parallel fibers with CFs. Long-term potentiation (LTP) at PF-PC synapses by weak PF stimulation alone was found later. Many lines of experimental evidence have supported their hypothesis using various experimental methods and materials for the past 50 years by many research groups. Although several controversial findings were presented regarding their hypothesis, the reasons underlying many of them were clarified. Today, their hypothesis is considered as a fundamental mechanism of cerebellar learning. Furthermore, it was found that the memory of adaptation is transferred from the FL to vestibular nuclei for consolidation by repetition of adaptation through the plasticity of vestibular nuclear neurons. In this article, after overviewing their cerebellar learning hypothesis, I discuss possible roles of LTD and LTP in gain-up and gain-down HVOR/HOKR adaptations and refer to the expansion of their hypothesis to cognitive functions.


Asunto(s)
Cerebelo , Aprendizaje , Animales , Masculino , Memoria , Modelos Teóricos , Plasticidad Neuronal , Células de Purkinje , Conejos , Reflejo Vestibuloocular
6.
Brain Nerve ; 71(7): 665-680, 2019 Jul.
Artículo en Japonés | MEDLINE | ID: mdl-31289241

RESUMEN

Half a century ago, cerebellar learning models based on a simple perceptron were proposed independently by Marr and Albus. Soon, these models were combined with Ito's flocculus hypothesis that the cerebellar flocculus controls the vestibulo-ocular reflex through teacher signal-dependent learning, and consequently integrated into the so-called Marr-Albus-Ito cerebellar learning hypothesis. Ten years later, Ito found the synaptic plasticity of long-term depression at cerebellar Purkinje cell synapses, which underlies cerebellar learning. The liquid-state machine (LSM) model, which adds the random inhibitory recurrent neural network composed of granule cells --Golgi cells loop to a simple perceptron, explained the learning of timing in eyeblink conditioning, the learning of gains in ocular reflex, and the formation of short- and long-term motor memories in the cerebellum. The LSM model is now extended to the cerebellar internal model-based voluntary movement control and cognitive function. Artificial intelligence (AI) based on the neural network models originating from a simple perceptron, has now developed to deep learning. As the LSM model of the cerebellum is the counterpart of deep learning in the brain, the cerebellum is considered to be the origin of current AI. Finally, we discuss the impact of the evolution of AI on future clinical cerebellar neurology.


Asunto(s)
Inteligencia Artificial , Cerebelo/fisiología , Modelos Neurológicos , Plasticidad Neuronal , Humanos , Redes Neurales de la Computación , Reflejo Vestibuloocular , Sinapsis
7.
Proc Natl Acad Sci U S A ; 115(28): 7428-7433, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941578

RESUMEN

In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition.


Asunto(s)
Cerebelo/patología , Aprendizaje/fisiología , Modelos Neurológicos , Actividad Motora/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad
8.
J Neurosci ; 38(27): 6130-6144, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29858484

RESUMEN

Perineuronal nets (PNNs), composed mainly of chondroitin sulfate proteoglycans, are the extracellular matrix that surrounds cell bodies, proximal dendrites, and axon initial segments of adult CNS neurons. PNNs are known to regulate neuronal plasticity, although their physiological roles in cerebellar functions have yet to be elucidated. Here, we investigated the contribution of PNNs to GABAergic transmission from cerebellar Purkinje cells (PCs) to large glutamatergic neurons in the deep cerebellar nuclei (DCN) in male mice by recording IPSCs from cerebellar slices, in which PNNs were depleted with chondroitinase ABC (ChABC). We found that PNN depletion increased the amplitude of evoked IPSCs and enhanced the paired-pulse depression. ChABC treatment also facilitated spontaneous IPSCs and increased the miniature IPSC frequency without changing not only the amplitude but also the density of PC terminals, suggesting that PNN depletion enhances presynaptic GABA release. We also demonstrated that the enhanced GABAergic transmission facilitated rebound firing in large glutamatergic DCN neurons, which is expected to result in the efficient induction of synaptic plasticity at synapses onto DCN neurons. Furthermore, we tested whether PNN depletion affects cerebellar motor learning. Mice having received the enzyme into the interpositus nuclei, which are responsible for delay eyeblink conditioning, exhibited the conditioned response at a significantly higher rate than control mice. Therefore, our results suggest that PNNs of the DCN suppress GABAergic transmission between PCs and large glutamatergic DCN neurons and restrict synaptic plasticity associated with motor learning in the adult cerebellum.SIGNIFICANCE STATEMENT Perineuronal nets (PNNs) are one of the extracellular matrices of adult CNS neurons and implicated in regulating various brain functions. Here we found that enzymatic PNN depletion in the mouse deep cerebellar nuclei (DCN) reduced the paired-pulse ratio of IPSCs and increased the miniature IPSC frequency without changing the amplitude, suggesting that PNN depletion enhances GABA release from the presynaptic Purkinje cell (PC) terminals. Mice having received the enzyme in the interpositus nuclei exhibited a higher conditioned response rate in delay eyeblink conditioning than control mice. These results suggest that PNNs regulate presynaptic functions of PC terminals in the DCN and functional plasticity of synapses on DCN neurons, which influences the flexibility of adult cerebellar functions.


Asunto(s)
Núcleos Cerebelosos/fisiología , Matriz Extracelular/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Transmisión Sináptica/fisiología , Animales , Parpadeo/fisiología , Condicionamiento Clásico/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Neurosci Res ; 136: 33-47, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29481883

RESUMEN

GPRC5B is a membrane glycoprotein robustly expressed in mouse cerebellar Purkinje cells (PCs). Its function is unknown. In Gprc5b-/- mice that lack GPRC5B, PCs develop distal axonal swellings in deep cerebellar nuclei (DCN). Numerous misshapen mitochondria, which generated excessive amounts of reactive oxygen species (ROS), accumulated in these distal axonal swellings. In primary cell cultures of Gprc5b-/- PCs, pharmacological reduction of ROS prevented the appearance of such swellings. To examine the physiological role of GPRC5B in PCs, we analyzed cerebellar synaptic transmission and cerebellum-dependent motor learning in Gprc5b-/- mice. Patch-clamp recordings in cerebellum slices in vitro revealed that the induction of long-term depression (LTD) at parallel fiber-PC synapses was normal in adult Gprc5b-/- mice, whereas the induction of long-term potentiation (LTP) at mossy fiber-DCN neuron synapses was attenuated in juvenile Gprc5b-/- mice. In Gprc5b-/- mice, long-term motor learning was impaired in both the rotarod test and the horizontal optokinetic response eye movement (HOKR) test. These observations suggest that GPRC5B plays not only an important role in the development of distal axons of PCs and formation of synapses with DCN neurons, but also in the synaptic plasticity that underlies long-term motor learning.


Asunto(s)
Cerebelo/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Depresión Sináptica a Largo Plazo/fisiología , Ratones Transgénicos , Receptores Acoplados a Proteínas G/deficiencia , Sinapsis/genética
10.
Neuropharmacology ; 118: 79-89, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28300552

RESUMEN

Cerebellar Purkinje cells (PCs) project their axon collaterals to underneath of the PC layer and make GABAergic synaptic contacts with globular cells, a subgroup of Lugaro cells. GABAergic transmission derived from the PC axon collaterals is so powerful that it could inhibit globular cells and regulate their firing patterns. However, the physiological properties and implications of the GABAergic synapses on globular cells remain unknown. Using whole-cell patch-clamp recordings from globular cells in the mouse cerebellum, we examined the monoaminergic modulation of GABAergic inputs to these cells. Application of either serotonin (5-HT) or noradrenaline (NA) excited globular cells, thereby leading to their firing. The 5-HT- and NA-induced firing was temporally confined and attenuated by GABAergic transmission, although 5-HT and NA exerted an inhibitory effect on the release of GABA from presynaptic terminals of PC axon collaterals. Agonists for 5-HT1B receptors and α2-adrenoceptors mimicked the 5-HT- and NA-induced suppression of GABAergic activity. Through their differential modulatory actions on the cerebellar inhibitory neural circuits, 5-HT facilitated PC firing, whereas NA suppressed it. These results indicate that 5-HT and NA regulate the membrane excitability of globular cells and PCs through their differential modulation of not only the membrane potential but also GABAergic synaptic circuits. Monoaminergic modulation of the neural connections between globular cells and PCs could play a role in cerebellar motor coordination.


Asunto(s)
Monoaminas Biogénicas/farmacología , Cerebelo/citología , Neuronas GABAérgicas/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , GABAérgicos/farmacología , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Norepinefrina/farmacología , Serotonina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
11.
PLoS One ; 11(10): e0164037, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711146

RESUMEN

Adaptations of vestibulo-ocular and optokinetic response eye movements have been studied as an experimental model of cerebellum-dependent motor learning. Several previous physiological and pharmacological studies have consistently suggested that the cerebellar flocculus (FL) Purkinje cells (P-cells) and the medial vestibular nucleus (MVN) neurons targeted by FL (FL-targeted MVN neurons) may respectively maintain the memory traces of short- and long-term adaptation. To study the basic structures of the FL-MVN synapses by light microscopy (LM) and electron microscopy (EM), we injected green florescence protein (GFP)-expressing lentivirus into FL to anterogradely label the FL P-cell axons in C57BL/6J mice. The FL P-cell axonal boutons were distributed in the magnocellular MVN and in the border region of parvocellular MVN and prepositus hypoglossi (PrH). In the magnocellular MVN, the FL-P cell axons mainly terminated on somata and proximal dendrites. On the other hand, in the parvocellular MVN/PrH, the FL P-cell axonal synaptic boutons mainly terminated on the relatively small-diameter (< 1 µm) distal dendrites of MVN neurons, forming symmetrical synapses. The majority of such parvocellular MVN/PrH neurons were determined to be glutamatergic by immunocytochemistry and in-situ hybridization of GFP expressing transgenic mice. To further examine the spatial relationship between the synapses of FL P-cells and those of vestibular nerve on the neurons of the parvocellular MVN/PrH, we added injections of biotinylated dextran amine into the semicircular canal and anterogradely labeled vestibular nerve axons in some mice. The MVN dendrites receiving the FL P-cell axonal synaptic boutons often closely apposed vestibular nerve synaptic boutons in both LM and EM studies. Such a partial overlap of synaptic boutons of FL P-cell axons with those of vestibular nerve axons in the distal dendrites of MVN neurons suggests that inhibitory synapses of FL P-cells may influence the function of neighboring excitatory synapses of vestibular nerve in the parvocellular MVN/PrH neurons.


Asunto(s)
Luz , Microscopía Electrónica , Células de Purkinje/citología , Células de Purkinje/ultraestructura , Sinapsis/metabolismo , Nervio Vestibular/citología , Nervio Vestibular/ultraestructura , Animales , Axones/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Proc Natl Acad Sci U S A ; 112(11): 3541-6, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25737547

RESUMEN

Long-term depression (LTD) at parallel fiber-Purkinje cell (PF-PC) synapses is thought to underlie memory formation in cerebellar motor learning. Recent experimental results, however, suggest that multiple plasticity mechanisms in the cerebellar cortex and cerebellar/vestibular nuclei participate in memory formation. To examine this possibility, we formulated a simple model of the cerebellum with a minimal number of components based on its known anatomy and physiology, implementing both LTD and long-term potentiation (LTP) at PF-PC synapses and mossy fiber-vestibular nuclear neuron (MF-VN) synapses. With this model, we conducted a simulation study of the gain adaptation of optokinetic response (OKR) eye movement. Our model reproduced several important aspects of previously reported experimental results in wild-type and cerebellum-related gene-manipulated mice. First, each 1-h training led to the formation of short-term memory of learned OKR gain at PF-PC synapses, which diminished throughout the day. Second, daily repetition of the training gradually formed long-term memory that was maintained for days at MF-VN synapses. We reproduced such memory formation under various learning conditions. Third, long-term memory formation occurred after training but not during training, indicating that the memory consolidation occurred during posttraining periods. Fourth, spaced training outperformed massed training in long-term memory formation. Finally, we reproduced OKR gain changes consistent with the changes in the vestibuloocular reflex (VOR) previously reported in some gene-manipulated mice.


Asunto(s)
Cerebelo/fisiología , Memoria/fisiología , Modelos Neurológicos , Núcleos Vestibulares/fisiología , Adaptación Fisiológica , Animales , Simulación por Computador , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología
13.
PLoS One ; 10(3): e0119376, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25785588

RESUMEN

The cerebellum plays important roles in motor coordination and learning. However, motor learning has not been quantitatively evaluated clinically. It thus remains unclear how motor learning is influenced by cerebellar diseases or aging, and is related with incoordination. Here, we present a new application for testing human cerebellum-dependent motor learning using prism adaptation. In our paradigm, the participant wearing prism-equipped goggles touches their index finger to the target presented on a touchscreen in every trial. The whole test consisted of three consecutive sessions: (1) 50 trials with normal vision (BASELINE), (2) 100 trials wearing the prism that shifts the visual field 25° rightward (PRISM), and (3) 50 trials without the prism (REMOVAL). In healthy subjects, the prism-induced finger-touch error, i.e., the distance between touch and target positions, was decreased gradually by motor learning through repetition of trials. We found that such motor learning could be quantified using the "adaptability index (AI)", which was calculated by multiplying each probability of [acquisition in the last 10 trials of PRISM], [retention in the initial five trials of REMOVAL], and [extinction in the last 10 trials of REMOVAL]. The AI of cerebellar patients less than 70 years old (mean, 0.227; n = 62) was lower than that of age-matched healthy subjects (0.867, n = 21; p < 0.0001). While AI did not correlate with the magnitude of dysmetria in ataxic patients, it declined in parallel with disease progression, suggesting a close correlation between the impaired cerebellar motor leaning and the dysmetria. Furthermore, AI decreased with aging in the healthy subjects over 70 years old compared with that in the healthy subjects less than 70 years old. We suggest that our paradigm of prism adaptation may allow us to quantitatively assess cerebellar motor learning in both normal and diseased conditions.


Asunto(s)
Envejecimiento/fisiología , Ataxia Cerebelosa/fisiopatología , Actividad Motora/fisiología , Patrones de Reconocimiento Fisiológico/fisiología , Reconocimiento Visual de Modelos/fisiología , Desempeño Psicomotor/fisiología , Adulto , Anciano , Estudios de Casos y Controles , Cerebelo/fisiopatología , Progresión de la Enfermedad , Femenino , Dedos/fisiología , Humanos , Masculino , Persona de Mediana Edad
14.
Neuron ; 85(2): 316-29, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25611509

RESUMEN

Neuronal networks are dynamically modified by selective synapse pruning during development and adulthood. However, how certain connections win the competition with others and are subsequently maintained is not fully understood. Here, we show that C1ql1, a member of the C1q family of proteins, is provided by climbing fibers (CFs) and serves as a crucial anterograde signal to determine and maintain the single-winner CF in the mouse cerebellum throughout development and adulthood. C1ql1 specifically binds to the brain-specific angiogenesis inhibitor 3 (Bai3), which is a member of the cell-adhesion G-protein-coupled receptor family and expressed on postsynaptic Purkinje cells. C1ql1-Bai3 signaling is required for motor learning but not for gross motor performance or coordination. Because related family members of C1ql1 and Bai3 are expressed in various brain regions, the mechanism described here likely applies to synapse formation, maintenance, and function in multiple neuronal circuits essential for important brain functions.


Asunto(s)
Cerebelo/metabolismo , Complemento C1q/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Animales , Cerebelo/citología , Aprendizaje , Ratones , Actividad Motora
15.
PLoS One ; 9(9): e106316, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25181481

RESUMEN

Stimulation of type I metabotropic glutamate receptors (mGluR1/5) in several neuronal types induces slow excitatory responses through activation of transient receptor potential canonical (TRPC) channels. GABAergic cerebellar molecular layer interneurons (MLIs) modulate firing patterns of Purkinje cells (PCs), which play a key role in cerebellar information processing. MLIs express mGluR1, and activation of mGluR1 induces an inward current, but its precise intracellular signaling pathways are unknown. We found that mGluR1 activation facilitated spontaneous firing of mouse cerebellar MLIs through an inward current mediated by TRPC1 channels. This mGluR1-mediated inward current depends on both G protein-dependent and -independent pathways. The nonselective protein tyrosine kinase inhibitors genistein and AG490 as well as the selective extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors PD98059 and SL327 suppressed the mGluR1-mediated current responses. Following G protein blockade, the residual mGluR1-mediated inward current was significantly reduced by the selective Src tyrosine kinase inhibitor PP2. In contrast to cerebellar PCs, GABAB receptor activation in MLIs did not alter the mGluR1-mediated inward current, suggesting that there is no cross-talk between mGluR1 and GABAB receptors in MLIs. Thus, activation of mGluR1 facilitates firing of MLIs through the TRPC1-mediated inward current, which depends on not only G protein-dependent but also Src-ERK1/2-dependent signaling pathways, and consequently depresses the excitability of cerebellar PCs.


Asunto(s)
Cerebelo/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neuronas GABAérgicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Interneuronas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Familia-src Quinasas/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Interneuronas/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/farmacología , Receptores de GABA/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPC/metabolismo , Fosfolipasas de Tipo C/metabolismo
16.
Prog Brain Res ; 210: 1-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24916287

RESUMEN

Long-term depression (LTD) here concerned is persistent attenuation of transmission efficiency from a bundle of parallel fibers to a Purkinje cell. Uniquely, LTD is induced by conjunctive activation of the parallel fibers and the climbing fiber that innervates that Purkinje cell. Cellular and molecular processes underlying LTD occur postsynaptically. In the 1960s, LTD was conceived as a theoretical possibility and in the 1980s, substantiated experimentally. Through further investigations using various pharmacological or genetic manipulations of LTD, a concept was formed that LTD plays a major role in learning capability of the cerebellum (referred to as "Marr-Albus-Ito hypothesis"). In this chapter, following a historical overview, recent intensive investigations of LTD are reviewed. Complex signal transduction and receptor recycling processes underlying LTD are analyzed, and roles of LTD in reflexes and voluntary movements are defined. The significance of LTD is considered from viewpoints of neural network modeling. Finally, the controversy arising from the recent finding in a few studies that whereas LTD is blocked pharmacologically or genetically, motor learning in awake behaving animals remains seemingly unchanged is examined. We conjecture how this mismatch arises, either from a methodological problem or from a network nature, and how it might be resolved.


Asunto(s)
Cerebelo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Modelos Neurológicos , Animales , Humanos
17.
Proc Natl Acad Sci U S A ; 111(1): E188-93, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24367085

RESUMEN

Cerebellar motor learning is suggested to be caused by long-term plasticity of excitatory parallel fiber-Purkinje cell (PF-PC) synapses associated with changes in the number of synaptic AMPA-type glutamate receptors (AMPARs). However, whether the AMPARs decrease or increase in individual PF-PC synapses occurs in physiological motor learning and accounts for memory that lasts over days remains elusive. We combined quantitative SDS-digested freeze-fracture replica labeling for AMPAR and physical dissector electron microscopy with a simple model of cerebellar motor learning, adaptation of horizontal optokinetic response (HOKR) in mouse. After 1-h training of HOKR, short-term adaptation (STA) was accompanied with transient decrease in AMPARs by 28% in target PF-PC synapses. STA was well correlated with AMPAR decrease in individual animals and both STA and AMPAR decrease recovered to basal levels within 24 h. Surprisingly, long-term adaptation (LTA) after five consecutive daily trainings of 1-h HOKR did not alter the number of AMPARs in PF-PC synapses but caused gradual and persistent synapse elimination by 45%, with corresponding PC spine loss by the fifth training day. Furthermore, recovery of LTA after 2 wk was well correlated with increase of PF-PC synapses to the control level. Our findings indicate that the AMPARs decrease in PF-PC synapses and the elimination of these synapses are in vivo engrams in short- and long-term motor learning, respectively, showing a unique type of synaptic plasticity that may contribute to memory consolidation.


Asunto(s)
Cerebelo/metabolismo , Aprendizaje/fisiología , Neuronas Motoras/fisiología , Animales , Conducta Animal , Técnica de Fractura por Congelación , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Memoria , Memoria a Corto Plazo/fisiología , Ratones , Fibras Nerviosas/patología , Plasticidad Neuronal , Células de Purkinje/citología , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Factores de Tiempo
18.
Proc Natl Acad Sci U S A ; 110(35): 14124-31, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23912185

RESUMEN

We investigated a unique microzone of the cerebellum located in folium-p (fp) of rabbit flocculus. In fp, Purkinje cells were potently excited by stimulation of the hypothalamus or mesencephalic periaqueductal gray, which induced defense reactions. Using multiple neuroscience techniques, we determined that this excitation was mediated via beaded axons of orexinergic hypothalamic neurons passing collaterals through the mesencephalic periaqueductal gray. Axonal tracing studies using DiI and biotinylated dextran amine evidenced the projection of fp Purkinje cells to the ventrolateral corner of the ipsilateral parabrachial nucleus (PBN). Because, in defense reactions, arterial blood flow has been known to redistribute from visceral organs to active muscles, we hypothesized that, via PBN, fp adaptively controls arterial blood flow redistribution under orexin-mediated neuromodulation that could occur in defense behavior. This hypothesis was supported by our finding that climbing fiber signals to fp Purkinje cells were elicited by stimulation of the aortic nerve, a high arterial blood pressure, or a high potassium concentration in muscles, all implying errors in the control of arterial blood flow. We further examined the arterial blood flow redistribution elicited by electric foot shock stimuli in awake, behaving rabbits. We found that systemic administration of an orexin antagonist attenuated the redistribution and that lesioning of fp caused an imbalance in the redistribution between active muscles and visceral organs. Lesioning of fp also diminished foot shock-induced increases in the mean arterial blood pressure. These results collectively support the hypothesis that the fp microcomplex adaptively controls defense reactions under orexin-mediated neuromodulation.


Asunto(s)
Arterias/fisiología , Conducta Animal , Circulación Sanguínea , Cerebelo/irrigación sanguínea , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neuropéptidos/fisiología , Animales , Iontoforesis , Masculino , Orexinas , Células de Purkinje/fisiología , Conejos
19.
J Neurosci ; 33(30): 12186-96, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23884927

RESUMEN

The structural maintenance of neural circuits is critical for higher brain functions in adulthood. Although several molecules have been identified as regulators for spine maintenance in hippocampal and cortical neurons, it is poorly understood how Purkinje cell (PC) spines are maintained in the mature cerebellum. Here we show that the calcium channel type 1 inositol trisphosphate receptor (IP3R1) in PCs plays a crucial role in controlling the maintenance of parallel fiber (PF)-PC synaptic circuits in the mature cerebellum in vivo. Significantly, adult mice lacking IP3R1 specifically in PCs (L7-Cre;Itpr1(flox/flox)) showed dramatic increase in spine density and spine length of PCs, despite having normal spines during development. In addition, the abnormally rearranged PF-PC synaptic circuits in mature cerebellum caused unexpectedly severe ataxia in adult L7-Cre;Itpr1(flox/flox) mice. Our findings reveal a specific role for IP3R1 in PCs not only as an intracellular mediator of cerebellar synaptic plasticity induction, but also as a critical regulator of PF-PC synaptic circuit maintenance in the mature cerebellum in vivo; this mechanism may underlie motor coordination and learning in adults.


Asunto(s)
Ataxia Cerebelosa/fisiopatología , Cerebelo/fisiología , Espinas Dendríticas/fisiología , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células de Purkinje/fisiología , Animales , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Cerebelo/citología , Cerebelo/patología , Quimera , Espinas Dendríticas/patología , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Mutantes , Plasticidad Neuronal/fisiología , Nistagmo Optoquinético/fisiología , Células de Purkinje/citología , Células de Purkinje/ultraestructura , Reflejo Vestibuloocular/fisiología , Sinapsis/fisiología
20.
Neural Netw ; 47: 72-80, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23462699

RESUMEN

Accumulating experimental evidence suggests that the memory trace of ocular reflex adaptation is initially encoded in the cerebellar cortex, and later transferred to the cerebellar nuclei for consolidation through repetitions of training. However, the memory transfer is not well characterized in the learning of voluntary movement. Here, we implement our model of memory transfer to interpret the data of prism adaptation (Martin, Keating, Goodkin, Bastian, & Thach, 1996a, 1996b), assuming that the cerebellar nuclear memory formed by memory transfer is used for normal throwing. When the subject was trained to throw darts wearing prisms in 30-40 trials, the short-term memory for recalibrating the throwing direction by gaze would be formed in the cerebellar cortex, which was extinguished by throwing with normal vision in a similar number of trials. After weeks of repetitions of short-term prism adaptation, the long-term memory would be formed in the cerebellar nuclei through memory transfer, which enabled one to throw darts to the center wearing prisms without any training. These two long-term memories, one for throwing with normal vision and the other for throwing wearing prisms, are assumed to be utilized automatically under volitional control. Moreover, when the prisms were changed to new prisms, a new memory for adapting to the new prisms would be formed in the cerebellar cortex, just to counterbalance the nuclear memory of long-term adaptation to the original prisms in a similar number of trials. These results suggest that memory transfer may occur in the learning of voluntary movements.


Asunto(s)
Adaptación Fisiológica , Cerebelo/fisiología , Corteza Cerebral/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Actividad Motora , Humanos , Modelos Neurológicos , Red Nerviosa/fisiología , Reflejo Vestibuloocular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA