Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Gene ; 918: 148459, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38608794

RESUMEN

BACKGROUND: Genetic diversity among species influences the disease severity outcomes linked to air pollution. However, the mechanism responsible for this variability remain elusive and needs further investigation. OBJECTIVE: To investigate the genetic factors and pathways linked with differential susceptibility in mouse strains associated with diesel exhaust exposure. METHODS: C57BL/6 and Balb/c mice were exposed to diesel exhaust (DE) for 5 days/week for 30 min/day for 8 weeks. Body weight of mice was recorded every week and airway hyperresponsiveness towards DE exposure was recorded after 24 h of last exposure. Mice were euthanised to collect BALF, blood, lung tissues for immunobiochemical assays, structural integrity and genetic studies. RESULTS: C57BL/6 mice showed significantly decreased body weight in comparison to Balb/c mice (p < 0.05). Both mouse strains showed lung resistance and damage to elastance upon DE exposure compared to respective controls (p < 0.05) with more pronounced effects in C57BL/6 mice. Lung histology showed increase in bronchiolar infiltration and damage to the wall in C57BL/6 mice (p < 0.05). DE exposure upregulated pro-inflammatory and Th2 cytokine levels in C57BL/6 in comparison to Balb/c mice. C57BL/6 mice showed increase in Caspase-1 and ASC expression confirming activation of downstream pathway. This showed significant activation of inflammasome pathway in C57BL/6 mice with ∼2-fold increase in NLRP3 and elevated IL-1ß expression. Gasdermin-D levels were increased in C57BL/6 mice demonstrating induction of pyroptosis that corroborated with IL-1ß secretion (p < 0.05). Genetic variability among both species was confirmed with sanger's sequencing suggesting presence of SNPs in 3'UTRs of IL-1ß gene influencing expression between mouse strains. CONCLUSIONS: C57BL/6 mice exhibited increased susceptibility to diesel exhaust in contrast to Balb/c mice via activation of NLRP3-related pyroptosis. Differential susceptibility between strains may be attributed via SNPs in the 3'UTRs of the IL-1ß gene.


Asunto(s)
Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Neumonía , Piroptosis , Emisiones de Vehículos , Animales , Emisiones de Vehículos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ratones , Neumonía/genética , Neumonía/metabolismo , Neumonía/patología , Neumonía/inducido químicamente , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Susceptibilidad a Enfermedades , Inflamasomas/metabolismo , Inflamasomas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
Sci Total Environ ; 902: 166063, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544448

RESUMEN

BACKGROUND: Diesel exhaust (DE) exposure contributes to the progression of chronic respiratory diseases and is associated with dysregulation of microRNA expression. The present study aims to investigate the involvement of miRNAs and target genes in DE-induced lung fibrosis. METHODS: C57BL/6 mice were divided into three groups. Group 1 mice were exposed to filtered air (Control). Group 2 mice were exposed to DE for 30 min per day, 5 days per week, for 8 weeks (DE). Group 3 mice received DE exposure along with resveratrol on alternate days for the last 2 weeks (DE + RES). Mice were sacrificed to isolate RNA from lung tissue for miRNA microarray profiling. Bronchoalveolar lavage fluid and lung tissues were collected for cell count and biochemical analysis. RESULTS: DE exposure resulted in differential expression of 28 miRNAs with fold change >2 (p < 0.05). The upregulated miR-212-3p was selected for further analysis. Consensus analysis revealed enrichment of SIRT1 in the FoxO pathway, along with a co-annotation of reduced body weight (p < 0.05). A549 cells transfected with a miR-212-3p inhibitor showed a dose-dependent increase in SIRT1 expression, indicating SIRT1 as a direct target. Treatment with resveratrol restored SIRT1 and miR-212-3p expression and led to a reduction in inflammatory cytokines (p < 0.05). The modulation of SIRT1 correlated negatively with macrophage infiltration, confirming its role in regulating cellular infiltration and lung inflammation. Fibronectin, alpha-SMA, and collagen levels were significantly decreased in DE + RES compared to DE group suggesting modulation of cellular functions and resolution of lung fibrosis. Furthermore, a significant decrease in FoxO3a and TGF-ß gene expressions was observed upon resveratrol administration thereby downregulating pro-fibrotic pathway. CONCLUSIONS: The present study demonstrates resveratrol treatment stabilizes SIRT1 gene expression by attenuating miR-212-3p in DE-exposed mice, leading to downregulation of TGF-ß and FoxO3a expressions. The study highlights the therapeutic role of resveratrol in the treatment of DE-induced pulmonary fibrosis.


Asunto(s)
MicroARNs , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Resveratrol/farmacología , Resveratrol/uso terapéutico , Emisiones de Vehículos/toxicidad , Sirtuina 1/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , Citocinas/metabolismo , Factor de Crecimiento Transformador beta
3.
Mol Immunol ; 158: 1-9, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37254294

RESUMEN

Studies have investigated the relationship between diesel exhaust (DE) exposure and lung health, highlighting the potential for DE to induce pulmonary inflammation and oxidative stress. However, the resolution of inflammation upon withdrawal of DE exposure needs further investigation. Therefore, resolution of diesel exhaust-induced lung damage was studied in the murine model. Mice (6 weeks) were divided into three groups. Group 1 (control) mice were exposed to filtered air, Group 2 (DE) mice were exposed to DE (5.1 ± 0.7 mg/m3) & Group 3 (DE-FA) mice were exposed to DE followed by filtered air exposure. Airway hyper-responsiveness was recorded after 24 h of the last exposure. BALF and lung samples were collected for cytokine estimation, immunobiological assays, and western blot analysis. DE exposure showed an increase in lung resistance thereby causing alteration in lung function parameters (p < 0.05) which was restored in the DE-FA group. BALF analysis showed a significant increase in total cell count and protein content in DE with no resolution in DE-FA groups (p < 0.05). Lung histology showed no reduction in the bronchiolar thickness and damage in the DE-FA group suggesting irreversible lung damage (p < 0.05). The significant increase in inflammatory cytokine levels, and collagen deposition showed persistent inflammatory phase and lung damage in the DE-FA group(p < 0.05). ZO-1 was significantly decreased in both test groups indicating disintegrated lung epithelium where in claudin-5 expression showed increased lung permeability. A significant increase in neutrophil elastase activity and decreased expression of, Elafin, resulted in lung epithelial damage in the DE-FA group. Lung injury marker alpha1-antitrypsin was increased in DE-FA groups indicating an immune defense mechanism against neutrophil elastase. The study showed that DE exposure causes persistent lung damage via neutrophil elastase-associated disruption of the epithelial barrier integrity and membrane dysfunction.


Asunto(s)
Elastasa de Leucocito , Emisiones de Vehículos , Ratones , Animales , Emisiones de Vehículos/toxicidad , Elastasa de Leucocito/metabolismo , Modelos Animales de Enfermedad , Pulmón , Citocinas/metabolismo
4.
Clin Exp Immunol ; 208(3): 292-300, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35443057

RESUMEN

Peptide immunotherapy (PIT) represents a safe and efficacious therapeutic regimen with in-consequential side-effects. The present study aims to identify T-cell epitopes of Per a 5 allergen, a delta class GST from Periplaneta americana and investigate effect of peptide treatment in murine model of cockroach allergen-mediated hyper-reactivity. The epitopes (TC-P1, TC-P2, and TC-P3) were identified as promiscuous MHC-II binders by MHC-Pred, ProPred, and IEDB analysis tool. Murine model of cockroach allergic hyper-reactivity was generated in Balb/c mice. A marked reduction in cellular infiltration in lungs (3-fold compared with Non-IT) was observed in T3-IT group as evidenced by total leucocyte count in BALF and histology. Specific IgE levels were reduced 3-fold in T2-IT and T3-IT compared with Non-IT with increase in IgG2a levels. IL-4 and IL-13 were reduced upto 2.5-fold in treatment groups compared with Non-IT group. Splenocytes revealed significant increase in levels of CD4+FoxP3+ T cells in TC-P1 and TC-P2 mice demonstrating a systemic shift towards Tregs. Peptide treatment downregulated NF-kB signalling in lung and enhanced the levels of immune-regulatory molecules α1-antitrypsin and elafin. Our results indicate that TC-P1 and TC-P3 alter Th2 cytokine milieu and antibody isotype ratio to suppress allergic inflammation. PIT modulates local and systemic mechanisms to resolve inflammation and possess potential for treatment in cockroach allergy.


Asunto(s)
Cucarachas , Hipersensibilidad , Alérgenos , Animales , Modelos Animales de Enfermedad , Hipersensibilidad/terapia , Inflamación , Ratones , Ratones Endogámicos BALB C , FN-kappa B , Péptidos , Linfocitos T
5.
J Biomater Sci Polym Ed ; 23(1-4): 185-206, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21192837

RESUMEN

Neo-vessel formation in ischemic tissues relies on numerous growth factors and cell fractions for the formation of mature, stable, functional vasculature. However, the efforts to regenerate tissues typically rely on the administration of a single growth factor or cells alone. Conversely, polymeric matrices have been investigated extensively to deliver multiple growth factors at pre-determined rates to form stable blood vessels in ischemic tissues. We report on a novel sequential delivery system of a fibrin hydrogel containing ionic-albumin microspheres that allows for the controlled release of two growth factors. The use of this system was investigated in the context of therapeutic angiogenesis. Material properties were determined based on degree of swelling measurements and degradation characteristics. Release kinetics of model angiogenic polypeptides FGF-2 and G-CSF were determined using ELISA and the bioactivity of released protein was evaluated in human endothelial cell cultures. The release of growth factors from ionic-albumin microspheres was significantly delayed compared to the growth factor released from fibrin matrices in the absence of spheres. The scaffolds were implanted in a murine critical limb ischemia model at two concentrations, 40 ng (low) and 400 ng (high), restoring 92% of the blood flow in a normally perfused limb using a fibrin hydrogel releasing FGF-2 containing albumin-PLL microspheres releasing G-CSF (measured by LDPI at the high concentration), a 3.2-fold increase compared to untreated limbs. The extent of neo-vessel formation was delineated by immunohistochemical staining for capillary density (CD-31+) and mature vessel formation (α-SMA+). In conclusion, our study demonstrated that the release kinetics from our scaffold have distinct kinetics previously unpublished and the delivery of these factors resulted in hindlimb reperfusion, and robust capillary and mature vessel formation after 8 weeks compared to either growth factor alone or bolus administration of growth factor.


Asunto(s)
Fibrina/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor Estimulante de Colonias de Granulocitos/farmacología , Hidrogeles/química , Microesferas , Neovascularización Fisiológica/efectos de los fármacos , Albúmina Sérica Bovina/química , Actinas/metabolismo , Animales , Capilares/efectos de los fármacos , Capilares/metabolismo , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor Estimulante de Colonias de Granulocitos/química , Factor Estimulante de Colonias de Granulocitos/metabolismo , Miembro Posterior/irrigación sanguínea , Miembro Posterior/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isquemia/metabolismo , Isquemia/fisiopatología , Cinética , Ratones , Ratones Endogámicos BALB C , Imagen de Perfusión , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA